

Coulomb excitation of nuclei around ¹³²Sn

Thorsten Kröll, Physik-Department E12, TU München, Germany

"Gamma-Ray Spectroscopy in Europe – Present and Future Challenges" ECT*, Trento, Italy May 8-12, 2006

Outline

- REX-ISOLDE
- Physics case
- Experimental set-up
- Coulex of ^{122,124,(126)}Cd
- Coulex of ^{138,140,142}Xe
- Test of g-factor measurement
- Conclusion and outlook

REX-ISOLDE

REX-ISOLDE & MINIBALL 2004

Region of interest

Phenomenological systematics

 $E(2_1^+) * B(E2\uparrow)_{theo} = 2.57 Z^2 A^{-2/3} (1.288 - 0.088 (N - \overline{N}))$

Atom. Data and Nucl. Data Tables 78, 1 (2001)

Preparation of the beams

<u>Cd-Run (2004)</u>

- PSB beam on neutron converter target to reduce isobaric contaminants
- **RILIS** (Resonance Ionisation Laser Ion Source)
- GPS separator
- 148 ms breeding in EBIS to ^{122,124}Cd³⁰⁺ and ¹²⁶Cd³¹⁺
- 2.86 MeV/u

Xe-Run (2005)

- PSB beam directly on UC_x target of ISOLDE
- MK7 (surface ioniser)
- HRS separator
- 198 ms breeding in EBIS to ^{138,140,142}Xe³⁴⁺
- 2.83-2.85 MeV/u

Experimental set-up

¹²²Cd on ¹⁰⁸Pd

¹²⁴Cd on ¹⁰⁴Pd

Effect of neutron converter target

E_{Rest} [a.u.]

IC - Si telescope

E_{Rest} [a.u.]

¹²⁴Cd (beam dump detector)

 $^{124}Cd \rightarrow ^{124(m)}In \rightarrow ^{124}Sn$ and $^{124}Cs \rightarrow ^{124}Xe$

Si - IC telescope

No isobaric contaminants in the Xe beams!!!!

Coulex of ¹⁴⁰Xe

Coulex of ^{138,142}Xe

B(E2) values (preliminary)

Test-experiment with ¹³⁸Xe beam

Problems:

- scattering from thick target
- high count rate from radioactive decays
- \rightarrow Improved setup:
- poor statistics (end of beam time!)
- → no precession measurement

IS415 K.-H. Speidel et al., Uni Bonn and TUM

Conclusion

"Safe" Coulomb excitation of neutron-rich nuclei around ¹³²Sn

Beams of neutron-rich Cd and Xe isotopes @ 2.85 MeV/u from REX ... these beams are unique to ISOLDE

... heaviest nuclei delivered by REX to MINIBALL so far

^{122,124}Cd measured **→** preliminary B(E2) values

- ¹²²Cd: B(E2^{\uparrow}) = 0.37 ± 0.11 e²b² ... improved accuracy
- ¹²⁴Cd: B(E2^{\uparrow}) = 0.29 ± 0.09 e²b² ... determined for the first time ... both values are within the expectations for vibrational nuclei
- Test with ¹²⁶Cd beam successfully performed

^{138,140,142}Xe measured with high statistics

Demonstrated the feasibility of a g-factor measurement in ¹³⁸Xe

... and the future

... and the future

ТЛ

Th. Kröll¹, T. Behrens¹, R. Krücken¹, T. Faestermann¹, R. Gernhäuser¹,
M. Mahgoub¹, P. Maierbeck¹, M. Münch¹, P. Thirolf², T. Morgan², D. Habs²,
O. Kester², R. Lutter², M. Pasini², K. Rudolph², F. Ames², H. Scheit³,
O. Niedermaier³, V. Bildstein³, D. Schwalm³, N. Warr⁴, D. Martin⁴,
D. Weisshaar⁴, J. Iwanicki⁵, P. Delahaye⁶, F. Wenander⁶, L. Fraile⁶,
P. Butler^{6,9}, T. Sieber⁶, U. Köster⁶, G. Georgiev⁶, J. Cederkäll^{6,3}, D. Voulot⁶,
S. Franchoo⁷, A. Scherillo^{4,8}, A. Hurst⁹, P. Mayet¹⁰, P. Van Duppen¹⁰,
J. Van de Walle¹⁰, I. Stefanescu¹⁰, M. Huyse¹⁰, O. Ivanov¹⁰, M. Pantea¹¹,
T. Davinson¹², P. Kent¹³, A. Ekström¹⁴, K.-H. Speidel¹⁵, J. Leske¹⁵, S. Schielke¹⁵

¹TU München – ²LMU München – ³MPI-K Heidelberg
 ⁴Universität zu Köln – ⁵SLCJ Warszawa – ⁶CERN Genève
 ⁷IPN Orsay – ⁸ILL Grenoble – ⁹University of Liverpool
 ¹⁰KU Leuven – ¹¹TU Darmstadt – ¹²University of Edinburgh
 ¹³University of York – ¹⁴Lunds Universitet – ¹⁵Universität Bonn

