Relativistic Projectile Coulomb Excitation to the Yrast and Non-yrast 2+ States of ${ }^{134} \mathrm{Ce}$ and ${ }^{136} \mathrm{Nd}$

Take R. Saito

Gesellschaft für Schwerionenforschung (GSI),
A research center of Helmholtz Association and
Johannes Gutenberg-Universität Mainz
for the RISING collaboration

Physics motivation

- Nuclear phase transition around A~130

Physics motivation

Triaxiality and γ-softness play a role in chiral structures

Indication of triaxiality and γ-softness near the ground state

- Lower $2^{+}{ }_{2}$ energy and large $\mathcal{B}\left(E 2 ; 2^{+}{ }_{2} \rightarrow 0^{+}\right)$
- $\boldsymbol{\gamma}$-softness
- Lower $2^{+}{ }_{2}$ energy than $4^{+}{ }_{1}$ and large $\mathcal{B}\left(E 2 ; 2^{+}{ }_{2} \rightarrow 2^{+}{ }_{1}\right)$
- Triaxiality
- Large scale microscopic Monte Carlo Shell Model Calculation is available
- Reproduced nuclear properties of neutron rich $\mathcal{B a}$ is otopes

Goal of the experiment

- To measure $B(E 2)$ of transitions depopulating $\mathbf{2 ~}^{+}{ }_{1}$ and 2^{+}, states in ${ }^{134} \mathrm{Ce}$ and ${ }^{136} \mathrm{Nd}$
- Relativistic Coulomb excitation of secondary ${ }^{134} \mathrm{Ce}$ and ${ }^{136} \mathrm{Nd}$ projectiles with FRS at GSI
- γ-ray measurements with RISING Ge detector array

	$\begin{gathered} \mathbf{N d} 135_{12.4 \mathrm{~m}}^{1.2(-)} \\ \mathrm{EC} \\ \hline \end{gathered}$		$\begin{aligned} & \mathrm{Nd137} \\ & 38.5 \mathrm{~m} \\ & 1 / 2+ \\ & c \quad * \\ & \hline \end{aligned}$		$\begin{gathered} \mathrm{Nd} 139_{29.7 \mathrm{~m}}^{3 / 2+} \\ \mathrm{EC}^{3} \end{gathered}$	$\begin{aligned} & \hline \begin{array}{c} \text { Nd140 } \\ 3.37 \mathrm{~d} \\ \mathbf{0}+ \\ \mathrm{EC} \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{Nd} 141_{2.49 \mathrm{~h}} \\ & 3 / 2+ \\ & \mathrm{EC} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{Nd} 142 \\ 0+ \\ 27.13 \end{gathered}$	$\begin{gathered} \hline \text { Nd143 } \\ 7 / 2- \\ 12.18 \end{gathered}$	$\begin{gathered} \mathrm{Nd144} \\ 2.29 \mathrm{E}+15 \mathrm{y} \\ 0+ \\ \& \quad 23.80 \end{gathered}$	$\begin{gathered} \mathrm{Nd} 145 \\ 7 / 2- \\ 8.30 \end{gathered}$	$\begin{gathered} \mathrm{Nd} 146 \\ 0+ \\ 17.19 \end{gathered}$
$\begin{aligned} & \hline \operatorname{Pr} 133 \\ & 6.5 \mathrm{~m} \\ & (3 / 2+) \\ & \text { EC } \end{aligned}$	Pr1 17 m $2-$ $2-$ EC		$\underbrace{}_{\substack{\text { Pr136 } \\ \text { E. } \\ \text { 2+ m }}}$	$\begin{gathered} \text { Pr13 } \\ 1.281 \\ 5 / 2+ \\ \mathbf{E C} \end{gathered}$	$\underbrace{\substack{1.45 \mathrm{~m} \\ 1+}}_{\mathrm{EC}^{\text {Pr138 }}} \quad$ *	Pr139 4.41 h $5 / 2+$ EC	Pr140 $\substack{3.39 \mathrm{~m} \\ 1+\\ \text { EC }}$	Pr14	$\begin{gathered} \text { Pr142 } \\ 19.12 \mathrm{~h} \\ 2-\quad * \end{gathered}$		$\begin{gathered} \operatorname{Pr} 144 \\ 17.28 \mathrm{~m} \\ 0- \end{gathered}$	Pr145 5.984 h $7 / 2+$ $3-$
$\begin{aligned} & \hline \text { Ce132 } \\ & \begin{array}{c} 3.51 \mathrm{~h} \\ \mathbf{0}^{+} \\ \text {EC }^{+} \end{array} \quad * \end{aligned}$	Ce133 $\mathrm{EC}^{97 \mathrm{~m}}$ $1 / 2+$		$\begin{gathered} \text { Ce135 } \\ 17.7 \mathrm{~h} \\ 1 /(+) \end{gathered} \mathrm{c}^{2}$	$\begin{gathered} \text { Ce13 } \\ 0+ \\ 0.19 \end{gathered}$	$\begin{gathered} \text { Ce137 } \\ 9.0 \mathrm{~h} \\ 3 / 2+ \\ \text { EC } \end{gathered} *$	Ce13 $0+$ 0.25	$\begin{aligned} & \text { Ce13 } \\ & \text { 137.641 } \\ & 3 / 2+ \\ & \text { EC } \\ & \hline \end{aligned}$	Ce14 0+ 88,48	$\begin{gathered} \text { Ce141 } \\ \text { 32.501 } \\ 7 / 2- \end{gathered}$	$\begin{gathered} \text { Ce142 } \\ \begin{array}{c} 5 \mathrm{E}+16 \mathrm{y} \\ 0+ \\ 11.08 \end{array} \\ \hline \end{gathered}$	$\begin{gathered} 33.039 \mathrm{~h} \\ 3 / 2- \end{gathered}$	$\begin{aligned} & \hline \mathbf{C e 1 4 4} \\ & 284.893 \mathrm{~d} \\ & 0+ \\ & \beta- \\ & \hline \end{aligned}$
$\begin{array}{r} \text { La13 } \\ 59 \mathrm{~m} \\ 3 / 2+ \\ \mathrm{EC} \\ \hline \end{array}$		$\begin{gathered} \text { La13 } \\ 3.912 \\ 5 / 2+ \\ \text { EC } \end{gathered}$	$\begin{gathered} \text { La13 } \\ \mathbf{6 . 4 5} \mathrm{n} \\ 1+ \\ \text { EC } \end{gathered}$	$\begin{gathered} \text { La13s } \\ 19.5 \mathrm{~h} \\ 5 / 2+ \\ \mathbf{E C} \end{gathered}$		$\begin{array}{\|c} \hline \mathbf{L a 1 3 7} \\ 6 \mathrm{EA} \mathbf{y} \\ 7 / 2+ \\ \text { EC } \\ \hline \end{array}$		La13 7/2+ 99,909	$\begin{gathered} \text { La140 } \\ 1.6781 \mathrm{~d} \\ 3- \end{gathered}$	$\substack{\text { La141 } \\ 3.92 \mathrm{~h} \\ (72 \mathrm{~h}) \\ \beta \\ \beta}$	$\begin{gathered} \text { La142 } \\ \substack{91.1 \mathrm{~m} \\ 2-\\ \beta} \\ \hline \end{gathered}$	$\begin{aligned} & 14.2 \mathrm{~m} \\ & (7 / 2)+ \\ & \beta- \end{aligned}$
$\begin{gathered} \text { Ba130 } \\ 0+ \\ 0.106 \end{gathered}$	$\begin{aligned} & \text { Ba131 } \\ & 11.50 \mathrm{~d} \\ & 1 / 2+ \\ & \mathrm{EC}^{*} * \end{aligned}$	Ba13 $0+$ 0.101	$\begin{gathered} \begin{array}{c} \text { Ba133 } \\ 10.51 \mathrm{y} \\ 1 / 2+ \\ \text { EC } \end{array} \quad * \cdot \end{gathered}$	Ba1	3913 $3 / 2+$ 6.592	Ba13 $0+$ 7.854	Ba13 $3 / 2+$ 11.23	Ba13 $0+$ 71.70	$\begin{gathered} 83.06 \mathrm{~m} \\ 7 / 2- \end{gathered}$			$\underset{\substack{10.6 \mathrm{~m} \\ 0+}}{\substack{\mathrm{Ba} \\ \hline}}$
$\begin{aligned} & \text { Cs129 } \\ & 32.06 \mathrm{~h} \\ & 1 / 2+ \\ & \mathrm{EC} \\ & \hline \end{aligned}$	$\begin{gathered} \text { Cs130 } \\ 29.21 \mathrm{~m} \\ 1+ \\ \text { EC }, \beta \end{gathered} \quad *$	$\begin{gathered} \text { Cs131 } \\ 9.689 \mathrm{~d} \\ 5 / 2+ \\ \mathrm{EC} \\ \hline \end{gathered}$	$\begin{gathered} \text { Cs132 } \\ 6.479 \mathrm{~d} \\ 2+ \\ \mathbf{E C}, \beta \end{gathered}$	Cs13 7/2+ 100	$\begin{gathered} \text { CS1 } \\ 2.0648 \\ 4+ \\ \mathbf{E C}, \beta \end{gathered}$	$\begin{gathered} \text { Cs135 } \\ 2.3 \mathrm{E}+6 \\ 7 / 2+ \\ \beta \\ \hline \end{gathered}$	$\int_{3}^{13.16 \mathrm{~d}} 5$	$\begin{gathered} 30.07 \mathrm{y} \\ 7 / 2+ \end{gathered}$	$\underbrace{33.41 \mathrm{~m}}_{3} \quad 3$			
$\begin{gathered} \text { Xe128 } \\ 0+ \\ 1.91 \end{gathered}$	$\begin{gathered} \text { Xe129 } \\ 1 / 2+ \\ 26.4 \end{gathered}$	Xe13	Xe131 $3 / 2+$ 21.2	Xe132	$\begin{gathered} \text { Xe133 } \\ 5.243 \mathrm{~d} \\ 3 / 2+ \\ 2 \end{gathered}$	$\begin{gathered} \text { Xe134 } \\ 0+ \\ 10.4 \\ \hline \end{gathered}$	$\begin{gathered} \text { Xe135 } \\ \substack{9.14 \mathrm{~h} \\ 3 / 2+\\ *} \end{gathered}$	$\begin{gathered} 2.3021 \mathrm{y} \\ 0+ \end{gathered}$	$\begin{gathered} \mathbf{N e l s i n}_{7 / 2-} \end{gathered}$	$\begin{gathered} 14.08 \mathrm{~m} \\ 0+ \end{gathered}$	$\begin{gathered} \text { Ae13y } \\ 39.68 \mathrm{~s} \\ 3 / 2- \end{gathered}$	$\begin{array}{\|c} \hline \begin{array}{c} \text { Xe140 } \\ 13.60 \mathrm{~s} \\ 0+ \\ \beta- \\ \beta \end{array} \\ \hline \end{array}$

Fragment separator

RISING setup at the final focal plane

Doppler shift correction

Selection of Coulomb excitation events:

[^0]
Gamma-ray spectra

Particle $-\gamma$ angular correlation

- Correlation on $\boldsymbol{\theta}$
- Rising-wise sorting at the rest frame
- Isotropic distribution observed
- Can not reproduced by calculations with alignments
- Efficiency calibration being crucial

- Correlation on φ difference between γ-rays and outgoing particles, event-by-event
- Using all Ge-CATE phase space
- Efficiency calibration cancelled
- Isotropic distribution observed
- Can not reproduced by calculations with alignments

Surprisingly, no (or very small) alignment was observed

Deducing $B(E 2)$

	${ }^{134} \mathrm{Ce}$ on ${ }^{197} \mathrm{Au}$ at 126 A MeV			${ }^{136} \mathrm{Nd}$ on ${ }^{197} \mathrm{Au}$ at 126 A MeV		
	$\mathrm{E}_{\gamma}[\mathrm{keV}]$	N_{γ}	$\varepsilon[\%]$	$\mathrm{E}_{\gamma}[\mathrm{keV}]$	N_{γ}	$\varepsilon[\%]$
$2^{+}{ }_{1} \rightarrow 0^{+}$	4091713 ± 101		1.98 ± 0.06	374	3039 ± 130	1.98 ± 0.06
$2^{+}{ }_{2} \rightarrow 0^{+}$	966		1.51 ± 0.05	862	156 ± 49	1.58 ± 0.05
$2^{+}{ }_{2} \rightarrow 2^{+}{ }_{1}$	557	<149	1.85 ± 0.05	489	183 ± 56	1.91 ± 0.06
	$\begin{gathered} \mathrm{N}_{\text {pro }} \\ 1895843 \pm 1377 \end{gathered}$	DAQ livetime [\%] 77		$\begin{gathered} \mathrm{N}_{\text {pro }} \\ 1986411 \pm 1409 \end{gathered}$	DAQ livetime [\%] 79	

Known value: ${ }^{134} \mathrm{Ce} 2^{+}{ }_{1} \rightarrow 0^{+} \mathrm{B}(\mathrm{E} 2), 52$ (5) W.u.; reference
Absolute efficiency with Lorentz boost with $\beta=0.42$ and DAQ livetime taken into account

- Isotropic distribution at the rest frame assumed
- Gamma-ray intensities normalized by particle numbers on the target

$B(E 2)$ values in W.u.

	${ }^{132} \mathrm{Ba}$	${ }^{134} \mathrm{Ce}$	${ }^{136} \mathrm{Nd}$
$2^{+}{ }_{1} \rightarrow 0^{+}$	43 (4)	52 (5)	80 (11)
		77 (26)	97 (27)
$2^{+}{ }_{2} \rightarrow 0^{+}$	3.9 (4)	< 11	11 (3)
			13 (5)
$2^{+}{ }_{2} \rightarrow 2^{+}{ }_{1}$	144 (14)	< 140	182 (93)

- Complete measurements for ${ }^{136} \mathrm{Nd}$
- Only upper limit given to $2^{+}{ }_{2} \rightarrow \mathrm{O}^{+}$and $2^{+}{ }_{2} \rightarrow \mathrm{O}^{+}$in ${ }^{134} \mathrm{Ce}$

B(E2) values with normalization to the target ${ }^{197}$ Au Coulomb excitation used for cross-checking

Comparison to the theoretical calculations

- Large scale microscopic Monte Carlo Shell Model Calculation

Still in progress by Otsuka of Tokyo University

- Naive Macroscopic Asymmetric Rotor model calculations
- Experimental information on the transition probability is limited only up to the 2^{+}atates

Asymmetric Rotor Model (ARM) for ${ }^{132} \mathrm{Ba},{ }^{134} \mathrm{Ce}$ and ${ }^{136} \mathrm{Nd}$

$\frac{B\left(E 2 ; 2_{2} \rightarrow 2_{1}\right)}{B\left(E 2 ; 2_{2} \rightarrow 0\right)}=\frac{20}{7} \frac{\sin ^{2}(3 \gamma)}{\sqrt{9-8 \sin ^{2}(3 \gamma)}-3+2 \sin ^{2}(3 \gamma)}$

- ${ }^{134}$ Ce: from the known branching ratio
- ${ }^{136} \mathcal{N} d$: from this experiment

Asymmetric Rotor Model (ARM) for ${ }^{132} \mathrm{Ba},{ }^{134} \mathrm{Ce}$ and ${ }^{136} \mathrm{Nd}$

- γ-rigid ARM
A.S. Davydov and G.F. Filippov, Nucle. Pfys. 8, 237(1958)
- γ-soft ARM with $\mu=0.5$
$\mathcal{A} . S . \operatorname{Davydov}$ and $\mathcal{A} . \mathcal{A}$. Chaban, Nucle. Pfys. 20, 499 (1960)

Summary

- Relativistic projectile Coulomb excitation with RI-beams of ${ }^{134} \mathrm{Ce}$ and ${ }^{136} \mathrm{Nd}$ to $2^{+}{ }_{1}$ and $2^{+}{ }_{2}$ with FRS-RISING at GSI
- The first relativistic Coulomb excitation to non-yrast states
- No alignment observed
- Relative $B(E 2)$ measurement normalized to the known $B(E 2)$ of $\mathbf{2}^{+}{ }_{1} \rightarrow 0^{+}$in ${ }^{134} \mathrm{Ce}$
- Data compared to asymmetric rotor model
- Indication of a triaxial soft rotor
- Microscopic calculations with Monte Carlo Shell Model are in progress

Backup slides

Deducing $B(E 2)$

	${ }^{134} \mathrm{Ce}+{ }^{197} \mathrm{Au}$ at 126 A MeV			${ }^{136} \mathrm{Nd}+{ }^{197} \mathrm{Au}$ at 126 A MeV		
Transitions	$\mathrm{E}_{\gamma}[\mathrm{keV}]$	N_{γ}	$\varepsilon[\%](\beta=0.42)$	$\mathrm{E}_{\boldsymbol{\gamma}}[\mathrm{keV}]$	N_{γ}	$\varepsilon[\%](\beta=0.42)$
$2_{1}^{+} \rightarrow 0^{+}$	409.2	1713 ± 101	1.98 ± 0.06	373.7	3039 ± 130	1.99 ± 0.06
$2_{2}^{+} \rightarrow 0^{+}$	965.7		1.51 ± 0.05	862.4	156 ± 49	1.58 ± 0.05
$2_{2}^{+} \rightarrow 2_{1}^{+}$	556.6	< 149	1.85 ± 0.06	488.6	183 ± 56	1.91 ± 0.06
${ }^{197} \mathrm{Au}$ transitions$7 / 2^{+} \rightarrow 3 / 2^{+}$	$\begin{gathered} \mathrm{E}_{\gamma}[\mathrm{keV}] \\ 547.5 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}_{\gamma} \\ 130 \pm 41 \\ \hline \end{gathered}$	$\begin{gathered} \varepsilon[\%](\beta=0.0) \\ 0.97 \pm 0.03 \end{gathered}$	$\begin{gathered} \mathrm{E}_{\gamma}[\mathrm{keV}] \\ 547.5 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{N}_{\gamma} \\ 171 \pm 44 \\ \hline \end{gathered}$	$\begin{gathered} \varepsilon[\%](\beta=0.0) \\ 0.97 \pm 0.03 \\ \hline \end{gathered}$
	$\begin{gathered} \mathrm{N}_{\text {pro }} \\ 189583 \pm 1377 \end{gathered}$		$\begin{aligned} & \text { DAQ livetime [\%] } \\ & 77 \end{aligned}$	$\begin{gathered} \mathrm{N}_{\text {pro }} \\ 1986411 \pm 1409 \end{gathered}$		$\begin{gathered} \text { DAQ livetime [\%] } \\ 79 \end{gathered}$

Known value: ${ }^{134} \mathrm{Ce} 2^{+}{ }_{1} \rightarrow 0^{+} \mathrm{B}(\mathrm{E} 2), 52$ (5) W.u.; reference

- Absolute efficiency with Lorentz boost with $\beta=0.42$ and DAQ livetime taken into account
- Isotropic distribution at the rest frame assumed
- Gamma-ray intensities normalized by particle numbers on the target

Absolute efficiency calibration

- γ - γ coincidence measurement with ${ }^{60} \mathrm{Co} \gamma$-ray source
- Absolute efficiency for 1.173 and $1.333 \mathcal{M e} \mathcal{V} \gamma$-rays
- Calibration with an assumption of isotropic $\gamma-\gamma$ angular correlation
- Actual γ - γ angular correlation gives difference of 1% in the calibration
\rightarrow systematic error
- Relative efficiency calibration (energy dependence) with ${ }^{152} \mathrm{Eu}$ γ-ray source
- Lorentz-boost to the rest frame

Selection of Coulomb excitation events: γ-multiplicity

Improved particle tracking

- Old tracking method: MW41 - MW42 - CATE
- Scattering in $\mathcal{M A}$ IS $->$ wrong vertex reconstruction
- New method with target-Si detector
- \mathcal{N} o affection from $\mathcal{M A}$ IS IC on the tracking
- Easier vertex reconstruction

Asymmetric Rotor Model (ARM) for ${ }^{132} \mathrm{Ba},{ }^{134} \mathrm{Ce}$ and ${ }^{136} \mathrm{Nd}$

- Very naive calculations
- For transitions from $\mathbf{2 ~}_{1}$
- ${ }^{132} \mathcal{B a}: \beta=0.19$
- ${ }^{134} \mathrm{Ce}: \beta=0.20$
- ${ }^{136}$ ㄱ $d: \beta=0.24$
- For transitions from $\mathbf{2 +}_{2}$

$$
\begin{aligned}
& B\left(E 2 ; 2_{1}^{+} \rightarrow 0^{+}\right)=\frac{e^{2} Q_{0}^{2}}{16 \cdot \pi} \cdot \frac{1}{2} \cdot\left[1+\frac{3-2 \cdot \sin ^{2}(3 \gamma)}{\sqrt{9-8 \cdot \sin ^{2}(3 \gamma)}}\right] \\
& Q_{0}=\frac{3 \cdot Z \cdot R^{2} \cdot \beta}{\sqrt{5 \pi}}
\end{aligned}
$$

$$
\begin{gathered}
B\left(E 2 ; 2_{2}^{+} \rightarrow 0^{+}\right)=\frac{e^{2} Q_{0}^{2}}{16 \cdot \pi} \cdot \frac{1}{2} \cdot\left[1-\frac{3-2 \cdot \sin ^{2}(3 \gamma)}{\sqrt{9-8 \cdot \sin ^{2}(3 \gamma)}}\right] \\
B\left(E 2 ; 2_{2}^{+} \rightarrow 2_{1}^{+}\right)=\frac{e^{2} Q_{0}^{2}}{16 \cdot \pi} \cdot \frac{10}{7} \cdot \frac{\sin ^{2}(3 \gamma)}{\sqrt{9-8 \cdot \sin ^{2}(3 \gamma)}} \\
\frac{B\left(E 2 ; 2_{2} \rightarrow 2_{1}\right)}{B\left(E 2 ; 2_{2} \rightarrow 0\right)}=\frac{20}{7} \frac{\sin ^{2}(3 \gamma)}{\sqrt{9-8 \sin ^{2}(3 \gamma)}-3+2 \sin ^{2}(3 \gamma \gamma}
\end{gathered}
$$

EUROBALL cluster detectors

- 15 Euroball cluster Ge detectors (105 crystals)
- Energy resolution for 1 MeV γ-ray with 126 A MeV RIbeams: ~2.0 \%

	Cluster detector	Angle	Target distance
Ring \#1	5	15.9°	$\sim 720 \mathrm{~mm}$
Ring \#2	5	33.0°	$\sim 720 \mathrm{~mm}$
Ring \#3	5	36.0°	$\sim 720 \mathrm{~mm}$ mm

[^0]: Cut with $0.8 \sim 1.8$ degrees is optimum

