Mirror symmetry of new (sub)-shell closures: ³⁶S – ³⁶Ca

P. Doornenbal, GSI and Universität zu Köln for the RISING collaboration

Rare ISotopes INvestigation at GSI γ-Spectroscopy at relativistic energies

Introduction and Motivation
RISING Spectrometer
Spectroscopy after fragmentation: ³⁶Ca
Status of SM-calculations
Summary and Outlook

Mirror Symmetry of new (sub)shell closures ³⁶S – ³⁶Ca

New Shell Structure at N»Z - the mirror point of view -

Is N,Z=14(16) shell stabilisation and N=20 shell quenching \cdot symmetric in isospin projection T_z?

Isospin symmetry in Z=20 isotopes - excited states in ³⁶Ca vs ³⁶S

Rising fast beam setup

RISING γ-array

Ge **Cluster** detectors

HIM

Target chamber

beam

Ge Miniball detectors

detectors

BaF₂ HECTOR

Secondary fragmentation of ³⁷Ca beam

Double fragmentation reaction: $^{40}Ca (420 \text{ A MeV}) + {}^{9}Be (4.0 \text{ g/cm}^2) \rightarrow {}^{37}Ca (200 \text{ A MeV}) + {}^{9}Be (0.7 \text{ g/cm}^2)$

Distinction of Projectile and 1n-Knockout

³⁶Ca in the different γ-branches

Coulomb Energy Differences

$$CED(I) = E_x(I, T_z = -T) - E_x(I, T_z = +T)$$

GSI

A well known case: The N=1 harmonic oscillator shell

Experimental facts:

•Excited states in ^{14}O are above the proton separation energy S_{P}

•The proton (π =8) gap in ¹⁴O is smaller than the neutron (v=8) gap in ¹⁴C

•The neutron (v=6) gap in ¹⁴O is smaller than the proton (π =6) gap in ¹⁴C

•Cross shell excitations for protons involve unbound states, which are coupled to the continuum (Thomas-Ehrmann shift)

•This affects neutrons via N-P interaction

Shell model calculations for ³⁶Ca and ³⁶S

Shell model calculations for ³⁶Ca and ³⁶S

Shell model calculations for ³⁶Ca and ³⁶S

Preliminary results, excitation energies in keV

	State	Exp/(p,d)	USD*	USD ^m	$\pi v s_{1/2} d_{5/2}$	$\pi v s_{1/2} d_{3/2}$
³⁹ Ca	3/2+	0	0	0	0	0
	1/2+	2650	2134	2608	2492	2372
³⁹ K	3/2+	0	0	0	0	0
	1/2+	2730	2426	2899	2783	2663
³⁶ Ca	2+	3016	2876	3293	3089	3089
³⁶ S	2+	3291	3133	3561	3353	3353
³⁶ Ca	v gap	4160 (90)	3647	3999	3825	3928
³⁶ S	π gap	4524(2)#	3867	4244	4061	4170

[#]Coulomb corrected by B.H. Wildenthal

Summary

- □ Large Coulomb energy difference between ³⁶S and ³⁶Ca
- Can be associated to Thomas-Ehrmann shift
- Preliminary shell model calculations using isospin symmetric USD reproduce this shift qualitatively
- □ At a later stage excitation across Z,N=20 have to be included

Mirror symmetry of new subshell closures: ³⁶Ca vs ³⁶S

P. Doornenbal,^{1,2} H. Grawe,² P. Reiter,¹ A. Al-Khatib,³ A. Banu,² T. Beck,² F. Becker,² P. Bednarczyk,² G. Benzoni,⁴ A. Bracco,⁴ A. Bürger,³ L. Caceres,^{2,5} F. Camera,⁴ H. Geissel,² J. Gerl,² M. Górska,² J. Grebosz,² M. Kavatsyuk,^{2,6} O. Kavatsyuk,^{2,6} M. Kmiecik,⁷ I. Kojuharov,² N. Kurz,² R. Lozeva,^{2,8} A. Maj,⁷ S. Mandal,⁹ W. Meczynski,⁷ B. Million,⁴ Zs. Podolyák,¹⁰ A. Richard,¹ N. Saito,² T. Saito,² H. Schaffner,² M. Seitlitz,¹ T. Striepling,¹ J. Walker,² N. Warr,¹ H. Weick,² O. Wieland,⁴ M. Winkler,² and H.J. Wollersheim² ¹Institut für Kernphysik, Universität zu Köln, Zülpicher Str 77, 50937 Köln, Germany ²Gesellschaft für Schwerionenforschung, Darmstadt, Germany ³Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Germany ⁴Dipartimento di Fisica, University di Milano, and INFN sezione di Milano, Italy ⁵Departmento die Fisica Teorica, Universidad Autonoma de Madri, E-28049 Madrid, Spain ⁶Taras Shevchenko Kiev National University, Ukraine ⁷The Henryk Niewodniczansky Institute of Nuclear Physics, Krakow, Poland ⁸Faculty of Physics, University of Sofia, Bulgaria ⁹University of Delhi, New Delhi, India ¹⁰Department of Physics, University of Surrey, UK