The shape of ⁷⁰Se from Coulex

Peter Butler (University of Liverpool)

REX-MINIBALL collaboration

Introduction

Evidence for spherical & prolate shape co-existence in ⁷²Se by Hamilton et al (1974)

Theoretical predictions of well deformed s.p. oblate shapes ($\gamma = 60^{\circ}$) in this mass region by Aberg & Leander (1979), oblate deformation near N~Z~32-36 by Nazarewicz et al. (1985)

General feature of HO potential, predict oblate g.s. in this mass r

Evidence for oblate shape for g

WS calculations (Mylaeus et al. ⁷⁰Se, coexisting with excited pro configuration at I = 8 (1989)

Evidence for oblate rotation in 68

Deja Vu

Low energy Coulex

Reorientation effect

 $P_{2+} \propto \langle 0 || E2 || 2^+ \rangle^2 . [1 - \langle 2^+ || E2' || 2^+ \rangle f(\xi)]$

where $\xi \sim \Delta E/(E_{beam})^{3/2}$

In our experiment P₂₊ changes by nearly factor of 2 if <2⁺||E2'||2⁺> changes sign

Production

Mass 70 swamped by As, Ga, ... select 70 Se 12 C 16 O \Rightarrow mass 98 Break up 70 SeCO inside EBIS, and charge breed to $q = 19^+$

Mass select $A/q \sim 3.68$

REX-ISOLDE $\Rightarrow \varepsilon \sim 2.4\% \Rightarrow I_{b}(^{70}Se) \sim 1.4 \times 10^{4}$ delivered to MB target

Miniball

Doppler corrected spectra

Normalisation

projectile excitation:

$$I_{\gamma}(^{70}\text{Se}) = \sigma(^{70}\text{Se})\varepsilon_{p} t I_{b} \varepsilon_{\gamma}(^{70}\text{Se})$$

target excitation:

$$I_{\gamma}(^{104}\text{Pd}) = \sigma(^{104}\text{Pd}) \varepsilon_{p} t I_{b} \varepsilon_{\gamma}(^{104}\text{Pd})$$

Matrix elements

Test beam: Coulomb excitation of 74Se

Results: ⁷⁰Se

Summary

The measured diagonal E2 matrix element for the 2⁺ state in ⁷⁰Se is consistent with a prolate shape

Next step: increase energy to 4.5 MeV/u: measure shape of 2⁺₂

Collaboration

A.M. Hurst¹, *P.A. Butler*¹, *D.G. Jenkins*², F. Ames⁶, C. Barton², A. Buerger¹⁴, J. Cederkall^{6,7}, E. Clement¹⁴, T. Czosnyka⁸, T. Davinson⁴, G. DeAngelis¹⁵, P. Delahaye⁶, J. Eberth¹⁰, A. Ekstrom⁷, S. Franchoo⁶, G. Georgiev⁶, A. Goergen¹⁴, O. Ivanov⁵, J. Iwanicki⁸, G.D. Jones¹, P. Kent², U. Koster⁶, M. Munch¹², E.S. Paul¹, M. Pantea¹¹, M. Petri¹, H. Scheit⁹, T. Sieber⁶, S. Siem¹³, J.F. Smith³, A. Steer², I. Stefanescu⁵, C. Sunde¹³, N. Syed¹³, J. Van de Walle⁵, R. Wadsworth², N. Warr¹⁰, F. Wenander⁶, D. Weisshaar¹⁰, M. Zielinska⁸.

¹Department of Physics, University of Liverpool, UK ²Department of Physics, University of **York**, UK ³Department of Physics and Astronomy, University of **Mancheste**r, UK ⁴Department of Physics and Astronomy, University of **Edinburgh**, UK ⁵IKS, Catholic University of **Leuve**n, Belgium ⁶PH Division, **CERN**, Geneva, Switzerland ⁷Department of Physics, University of **Lund**, Sweden ⁸Heavy Ion Laboratory, University of **Warsaw**, Poland ⁹MPI, University of Heidelberg, Germany ¹⁰IKP, University of **Cologne**, Germany ¹¹IKP, **Darmstadt** Technical University, Germany ¹²Department of Physics, **Munich** Technical University, Germany ¹³Department of Physics, University of **Oslo**, Norway ¹⁴CEA, **Saclay**, France ¹⁵ INFN-LNL **Legnaro**, Italy