<u>System</u>

Paul Nolan

University of Liverpool

PET imaging

Compton Camera for other images

The SmartPET project

- Positron Emission Tomography
- I mage Reconstruction

Pulse Shape Analysis

- Real Charge Analysis
- I mage Charge Analysis

Application to PET Imaging

- Experimental Details
- Reconstructed I mages

Current Status & Future Work

- Online PSA
- DAQ development
- Phantom I maging

of LIVERPOOL The SmartPET Project

The Development of a HPGe based Small Animal Imaging System

- Dual Head PET Camera
- Proof of Principle for HPGe imaging
- Development of sophisticated digital electronics
- Real time signal processing techniques
- Pulse Shape Analysis (PSA) techniques
- E-Field simulation
- Image Reconstruction
 - PET
 - Compton Imaging

THE UNIVERSITY The SmartPET Project

Positron Emission Tomography

- Diagnostic imaging modality
- Radio-tracer administered
- Assessment of organ function
- Detection of annihilation gamma-rays
- LOR definition

Gamma ray detectors -

- Human disease modelling
- Pharmaceutical development
- Requires fine spatial resolution

Image Reconstruction for PET

- Intersection of LORs define source distribution
- Use these LORs to reconstruct image

Analytic Reconstruction

- Filtered Back Projection (FBP)
- ➤ Fast
- Assumes infinite distribution of data
- Poor performance with low statistics

Statistical Reconstruction

- I terative (slow) techniques, ML-EM
- Handles low statistics
- Accurate
- System modelling

SmartPET System

- Two planar 6x6x2cm HPGe crystals
- Electrical segmentation
 - No loss of efficiency
- ➤ 5 mm strip pitch
 - 5x5x20mm granularity
- Charge sensitive pre-amps

- Digital DAQ System Daresbury
- ▶ 14 bit, 80MHz FADCs
- > 200k FPGAs
- > MWD Algorithm
- Store Pulses facilitate PSA

Detector energy resolutions

Position dependent performance: Singles Source Scans

- 1mm Tungsten collimation (9cm)
- 1mm step positions
- Sources
 - 1GBq ²⁴¹Am annular source – 40cps
 - 1.8GBq ⁵⁷Co source (pellet) – 150cps
 - 70.21MBq ¹³⁷Cs 35cps
- Scans
 - ²⁴¹Am 120 seconds at x-y position table
 each position (AC and DC)
 - ⁵⁷Co 60 seconds (AC and DC) 120 seconds (side)
 - 137Cs 180 seconds

Co-57 AC x-y surface intensity of Liverpool distribution

 The results are presented for 122 keV with 1 minute of data per position. Source on AC side.

Co-57 DC x-y surface intensity distribution

 The results are presented for 122 keV with 1 minute of data per position. Source on DC side.

Co-57 side surface intensity distribution

THE UNIVERSITY

of LIVERPOOL

 The results are presented for 122 keV with 1 minute of data per position.

Co-57 side surface T30 rise time distribution

THE UNIVERSITY

of LIVERPOOL

<u>Risetime Analysis</u>

- Charge pulse results from γ -ray interaction
 - Drift Velocity of e-h pairs saturated
 - Rise time varies with depth
 - ➤ Calibrate T10, T50, T90

Magnitude

T50 response on the DC side

Distance away from contact

Recalculation of the position

 T50 is a good measure to evaluate the depth of interaction inside the major part of the detector

Image Charge Analysis

Signals induced on adjacent strips

Finite magnitude while charges are moving

Relative magnitudes vary with proximity of interaction

Calibration of some asymmetry parameter

 $=\frac{Q_{left}-Q_{right}}{Q_{left}+Q_{right}}$

- > One of the first demonstrations of event-by-event applied PSA
- ➤ I maging of ²²Na point sources

- ➤ NI M logic coincidence trigger
- Data collected every 5°
- ➢ FBP & ML-EM Reconstruction

Reconstructed Images

- Simple PSA techniques applied event-by-event
- Filtered Back Projection ²²Na source
- FWHM = 9.5mmAndy Mather 80mm

No PSA

<u>PSA</u> FWHM = 1.2mmAndy Mather

80mm

2mm depth

1mm lateral

Online PSA - DAQ

- New digital DAQ commissioned 50 100 kHz
- Commercial Solution from Lyrtech
 - ➤ 105MHz, 14 bit FADCs
 - FPGA & DSP online PSA (x,y,z,t,E)
- 2 Levels of processing with global time stamping

- DAQ testing underway & algorithm development ongoing
- Phantom imaging summer 2006
- Small animal imaging

New Sources for scanner characterisation

- Micro Deluxe Phantom filled with 370kBq of ²²Na
- **Main Applications:** ٠

THE UNIVERSITY LIVERPOOL

- Small animal system evaluation (with field-of view greater than 45 mm)
- Spatial resolution measurements
- Evaluation of centre-of-rotation error

Specifications:

- Rod diameters: 1.2, 1.6, 2.4, 3.2, 4.0 and 4.8 mm
- Height of rods: 3.4 cm
- Insert diameter: 4.4 cm
- Cylinder outside diameter: 5 cm
- Cylinder inside diameter: 4.5 cm
- Cylinder inside height: 3.7 cm

Compton Camera aspects

- γ must have a trajectory along a cone surface, described by axis : β and θ
- Energy of incident gamma E₀ (E_e, <u>x</u>1), and location of second event

Compton Camera

of Liverpool

- 10µCi ¹⁵²Eu (370 kBq)
- 60mm from det 1
- Source rotated
 - Zero degrees in 15° steps up to 60°
- Detector separation
 - 3 11cm in 2cm steps
- Gates set on energies
 - 779, 1408keV

Imaging Progress : Compton Camera

- ¹⁵²Eu point source imaging.
- 30 keV gate on 778 keV.
- 30mm detector separation with 5mm position resolution.
- Single interactions in each detector.

Cone beam reconstruction with 10 iterations. No PSA

~6mm image resolution x-y.

Imaging Progress : Compton Camera

- ¹⁵²Eu point source imaging.
- 30 keV gate on 1408 keV.
- 30mm detector separation with 5mm position resolution.
- Single interactions in each detector.

Cone beam reconstruction with 10 iterations. No PSA

~8mm image resolution x-y.

1408 keV

Image analysis

Conclusions

- Detectors work well and have been characterised
 approx 1 x 1 x 1 mm position resolution
- Images obtained with point sources for both PET and Compton Camera
- improve Pulse shape analysis implementation
- Next step is to use a phantom and then a realistic subject to image
- small animal with ¹⁸F
- extended radioactive source (waste?)
- Implement new electronics for high count rates and online analysis


```
<u>R.J. Cooper</u><sup>(1)</sup>, A.J. Boston<sup>(1)</sup>, H.C Boston<sup>(1)</sup>, J.R. Cresswell<sup>(1)</sup>,
A.N. Grint<sup>(1)</sup>, A.R. Mather<sup>(1)</sup>, P.J. Nolan<sup>(1)</sup>, D.P. Scraggs<sup>(1)</sup>,
G. Turk<sup>(1)</sup>, C.J. Hall<sup>(2)</sup>, I. Lazarus<sup>(2)</sup>, J. Simpson<sup>(2)</sup>, A. Berry<sup>(3)</sup>, T.
Beveridge<sup>(3)</sup>, J. Gillam<sup>(3)</sup>, R.A. Lewis<sup>(3)</sup>
```

 (1) Department of Physics, University of Liverpool, UK
 (2) CCLRC Daresbury, Warrington, Cheshire, UK
 (3) School of Physics and Materials Engineering, Monash University, Melbourne, Australia

THE UNIVERSITY of LIVERPOOL

THE UNIVERSITY of LIVERPOOL

²²Na

Online PSA

- Until now, all PSA has been developed/performed offline
- There is a need to demonstrate the principle online
- Calculate 3D interaction position event by event in real time
- Output list-mode data set
- Direct input to reconstruction algorithms

- Development of new digital DAQ system
- High count rate capability
 - ~50kHz 100KHz per strip
- Real time signal processing techniques
- FPGA/DSP requirement