Spectroscopy with radioactive beams: MINIBALL

CERN, Geneva (REX-ISOLDE)

Cologne (with Cologne plunger)

ILL, Grenoble (Lohengrin)

GSI, Darmstadt (Rising)

Where can we find new physics?

\rightarrow Need radioactive beams

The challenge

Very low beam intensities

→ Need high *efficiency* like Euroball or Gammasphere.

 \rightarrow Need detectors very close to target.

Inverse kinematics

→ Leads to Doppler broadening.
→ Detector should subtend a small solid angle.
→ Need high granularity.

The solution

- Segmented Ge detectors
 - \rightarrow New technology needed:
 - more compact cold electronics (e.g. Miniball has seven cold FETs in same space where Euroball has just one).
 - new warm preamplifiers with higher bandwidth and smaller physical size.
- Pulse-shape analysis
 - \rightarrow New techniques also needed
 - new acquisition electronics.
 - Monte-Carlo simulations of pulse-shapes needed.
 - experimental studies of pulse-shapes also needed.

The 6-fold segmented, encapsulated IKP Miniball detector

Pulse-shape analysis

IKP

PSA and scattering

- Collimated source in front of segment 4. Net signals in segments 4, 5 and 6, i.e. scattering from 4 to 5 to 6.
- For PSA, we assume: *main interaction is first interaction*. Good assumption at low and high energies. Less good for intermediate energies.
- We must subtract net charge from each segment, in order to obtain the mirror-charge amplitudes.

The Digital Gamma Finder (DGF-4C)

- Commercial product made by Xia (http://www.xia.com)
- Single width CAMAC module
- 4 complete spectroscopic channels
- 40 MHz sampling ADC
- Onboard signal processing by FPGA and DSP
- Possibility of writing user code (Miniball uses this for onboard Pulse-shape analysis)
- Separate digital fast and slow filters implemented in FPGA
- Only validated events are processed by DSP
- 8 Kword buffer in DSP + hardware histograms
- Data transfer by fast CAMAC

Scan of Miniball detector

- Detector scanned along radius with a collimated source
- Consider steepest slope of core signal as a function of source position
- Innermost positions have fastest rise time (shortest migration path for electrons)

- Detector scanned across a segment with a collimated source
- Consider the ratio of the mirror charge amplitudes in the neighbouring segments
- Asymmetry of mirror charge amplitudes depends on position (mirror charge greatest in closest segment)

2-D scan of Miniball detector

- 14 positions measured with a collimated source
- For each we plot time-tosteepest-slope vs. mirror charge asymmetry for segments 3 and 4
- Position of source can be seen clearly

Doppler correction (in beam)

- In-beam experiment at Cologne tandem
- ³⁷Cl beam on deuterated Ti target (inverse kinematics)
- v/c = 5.7%
- A monitor detector placed at 165° far from the target was also used. This detector measured a FWHM of 7.8 keV at this energy (due to angular straggling of outgoing proton). If we use a positionsensitive particle detector, we can reduce this contribution
- Combining with intrinsic resolution of 2.2 keV, contribution from uncertainty in position is: 34.0 keV - just core 11.4 keV - segment hit pattern 6.2 keV - full PSA

REX-ISOLDE

• ISOLDE

- \rightarrow operational since 1967
- \rightarrow uses CERN PS-booster
- \rightarrow more than 600 isotopes
- \rightarrow more than 60 elements
- \rightarrow Up to 10¹¹ ions/s

• REX-ISOLDE

- \rightarrow operational since 2001
- \rightarrow Penning trap (REX)
- \rightarrow Electron-beam ion source (EBIS)
- \rightarrow Radio-frequency quadrupole (RFQ)
- \rightarrow Interdigital H-type (IH) structure
- \rightarrow Three 7-gap resonators
- \rightarrow 9-gap resonator since 2004
- \rightarrow Final beam up to 3.0 MeV/u
- \rightarrow CERN facility since end of 2003

Ancillary Detectors

• Double-sided siliconstrip detector (Edinburgh University)

- 16 annular p+n junction strips
- 24 n+n junction strips (sectors) per quadrant

Davinson et al. NIM A454 (2000) 350-358

• Parallel-plate avalanche counter (TU Darmstadt)

- 25 strips in x and y directions ections
- 1.6 mm strip resolution
- 4 10 mbar isobutane

Cub et al. NIM A453 (2000) 522-524

³⁰Mg is OUTSIDE of the "Island of Inversion" ³²Mg is INSIDE of the "Island of Inversion"

GSI Fragment Recoil Separator

- FRS produces and separates secondary beams with fission or fragmentation.
- Gives fully stripped ions with energies 100-500 Mev/u (i.e. a relativistic beam).

- TOF SCI21-41 gives β . \rightarrow dE and β give Z.
- Dipole magnet gives $B\rho$. $\rightarrow B\rho$ and β give A/Q.
- Multiwires give position and direction of beam (i.e. tracking).
- Ionisation chamber (MUSIC) gives dE.

Rare ISotope INvestigations at GSI (**RISING**)

- CATE array of 9 positionsensitive △E-E telescopes at 0[•].
- 15 Euroball clusters at forward angles (105 detectors).
- 8 Miniball clusters at ~90° (24 detectors).
- Hector (BaF₂) at backward angles.

Particle identification

- We can plot Z (from MUSIC) vs. A/q (from TOF).
- This lets us select the beam incident on the RISING target.

- Or we can plot E vs. ∆E in CATE.
- This gives us the product after the reaction at the RISING target.

Tracking and Doppler Correction

- Multiwires give direction and position of incoming beam.
- We project onto target to calculate interaction position.
- CATE gives direction of outgoing particle.
- We calculate angle between outgoing particle and detector and perform Doppler correction.

Miniball@RISING - ³⁶Ca

- Double fragmentation reaction:
 - \rightarrow ⁴⁰Ca(630 A.MeV) + ⁹Be at entrance to FRS
 - \rightarrow Select ³⁷Ca with FRS (B ρ + MUSIC + TOF)
 - \rightarrow ³⁷Ca(200 A.MeV) + ⁹Be in centre of RISING spectromter
 - \rightarrow Select ³⁶Ca with CATE (Δ E-E telescope)
- Analysis by Pieter Doornenbal (GSI) see his talk for details.

- The background is mostly from Bremstrahlung.
- Bump to the left of the peak is a single escape peak.
- $2_1^+ \rightarrow 0_1^+$ transition at 3014 keV observed for the first time. Only ground state known previously.
- Despite the high v/c of 55 %, we get resolution of 4.7 %

Miniball@Lohengrin (ILL, Grenoble)

- Fission occurs at target placed inside the reactor.
- A particular fission product is selected with the Lohengrin mass separator and delivered to a mylar catcher foil surrounded by a pindiode array and Ge detectors (incl. 3 Miniball capsules).
- Microsecond isomers were studied and g-factors measured.
- For details see Gary Simpson's talk this afternoon.
- Published in Phys. Rev. C 71, 064327 (2005)

Scan of GAMS-5 crystal (ILL, Grenoble)

- Resolution of GAMS-5 curved crystal spectrometer depends on quality of curvature.
- Using a Miniball-type 12-fold segmented detector and PSA, we determine position on crystal where each γ ray was diffracted.

The Collaboration

(Miniball + RISING + Grenoble)

Bonn: A. Bürger, H. Hübel, A. Al-Khatib, P. Bringel, A. Neußer, A.K. Singh, D. Mehta, T.S. Reddy. CERN: J. Aysto, U. Bergmann, P. Delahaye, V. Fedosseev, L. Fraile, H. Fynbo, G. Georgiev, U. Koester, T. Sieber, O. Tengblad. Cologne: N. Warr, S. Binder, J. Eberth, F. Finke, C. Fransen, G. Gersch, H. Hess, K. Jessen, J. Jolie, D. Martin, G. Pascovici, P. Reiter, A. Richard, A. Scherillo, M. Seidlitz, T. Striepling, O. Thelen, H.G. Thomas, D. Weißhaar. Cracow: M. Kmiecik, A. Maj, W. Meczynski. Copenhagen: G. Sletten. Daresbury: J. Simpson, D. Warner. Edinburgh: T. Davinson, P. Woods. Göttingen: K.P. Lieb. ILL(Grenoble): H. Börner, H. Faust, M. Jenschel, P. Mutti, R. Orlandi, G. Simpson. I. Tsekhanovich, Grenoble: J. Genevey, R. Gugliemini, J.A. Pinston, **GSI:** A. Banu, T. Beck, F. Becker, P. Bednarczyk, P. Doornenbal, H. Geissel, J. Gerl, M. Gorska, H. Grawe, J. Grebosz, M. Hellström, M. Kavatsyuk, O. Kavatsyuk, I. Kojouharov, N. Kurz, R. Lozeva, S. Mandal, I. Mukha, G. Münzenberg, N. Saito, T. Saito, H. Schaffner, H. Wieck, M. Winkler, H.J. Wollersheim. Heidelberg: V. Bildstein, H. Boie, C. Gund, J. Fitting, F. Köck, M. Lauer, O. Niedermayer, U. Pal, H. Scheit D. Schwalm, HMI Berlin: C. Wheldon. Jülich: W. Gast. Keele: G. Hammond. Leuven: P. van den Bergh, P. van Duppen, M. Huyse, O. Ivanov, K. Krouglov, P. Mayet, R. Raabe, J. van Roosbroeck, R. Sleurs, I. Stefanescu, J.-C. Thomas, J. van de Walle, H. de Witte. Liverpool: P. Butler, A. Hurst. Madrid: A. Jungclaus. Mainz: S. Franchoo, A. Ostrowski. Milan: G. Benzoni, A. Bracco, F. Camera, B. Million, O. Wieland. New Delhi: S. Muralithar. Saclay: E. Clement, A. Görgen. Strasbourg: P. Baumann, S. Courtin, P. Dessagne, A. Knipper, M. Krauth, F. Marechal, C. Miehe, F. Perrot, E. Poirier, G. Walter. Surrey: Z. Podolyak, J. Walker. TU Darmstadt: G. Schrieder, T. Nilsson, M. Pantea, H. Simon. LMU (Munich): D. Habs, F. Ames, J. Cederkäll, S. Emhofer, O. Kester, T. Kröll, R. Lutter, K. Rudolf, P. Thirolf, B. Wolf. TU Munich: R. Krücken, T. Behrens, T. Festermann, R. Gernhäuser, T. Morgan, M. Paisini, W. Schwerdtfeger. Warsaw: J. Iwanicki. York: C. Barton, D. Jenkins.