Shape phase transitions far from stability

Shape phases in collective nuclei

Stable quadrupole deformation

Vibration around spherical shape

The three limits of the Interacting Boson Model

"This three limits, associated with dynamical symmetries of the Hamiltonian, appear as shape phases at the classical level $(N \rightarrow \infty)$ " A.E.L. Dieperink and O. Scholten Phys. Rev. Letters 44 (1980) p.1747

Phase transitions and critical points

Parameter-free analytical approximations can be obtained for the critical points

Critical points: not only close to stability

N. Marginean Trento 2006

Quasi- γ Bands in N \approx Z \approx 40 region

4 GASP experiments

Quasi-γ bands identified or completed in ⁷⁸Sr, ⁸⁰Sr, ⁸²Zr, ⁸⁴Zr, ⁸⁶Zr, ⁸⁶Mo, ⁸⁸Mo

The plot of $E(2_{\gamma}^{+}, 3_{\gamma}^{+})$ versus $E(2_{1}^{+})$ clearly indicates the **Rotor-Vibrator phase** *transition*

Even-even Sr-Zr-Mo with N≤50

IBA description

$$H_{IBA} = a \left[(1 - \zeta) n_d - \frac{\zeta}{4N} (Q \cdot Q) + \zeta' \cdot (L \cdot L) \right]$$
$$Q = s^+ \widetilde{d} + d^+ \widetilde{s} + \chi [d^+ \widetilde{d}]^{(2)}$$

Fine grid on parameter space

• χ^2 merit function including both energy and branching ratios

New parameters:
$$x = \zeta \cdot \frac{1}{1 + \frac{|\chi|}{\sqrt{7}/2}}$$
 $y = \frac{\zeta \cdot |\chi|}{\sqrt{7}/2}$

Phase Transition near N=Z line

Nuclear structure studies using PRISMA/CLARA setup

- Multi-nucleon transfer reactions with neutron-rich, stable projectiles on heavy targets
- Projectile-like reaction products are detected with PRISMA placed around the grazing angle

82Se(500 MeV) + 238U

Multi-nucleon transfer _____ Deep-inelastic collisions

The evolution of the nuclear structure can be observed over large regions

Onset of deformation towards N=40

- First identification of 4⁺ and possibly 6⁺ states in ⁶⁴Fe
- First observation of γ rays from the yrast levels of ⁵⁸Cr

Cr

Fe

γ -softness in heavy Cr and Fe isotopes

The R(4/2) of ⁵⁸Cr has exactly the value predicted for E(5) critical point

⁵⁸Cr : A shape phase transition critical point ?

- The excitation energies for all states in the yrast band of ⁵⁸Cr are very close to the predictions of the E(5) symmetry
- Several large-scale Shell-Model results are also in good agreement with the E(5) solution

$$\begin{split} H_{IBA} &= \epsilon n_d + A \cdot P^+ P & \text{Critical point } \epsilon/A = 2(N-1) \\ N &= 5, & \text{empirical } e_B = 0.2 \cdot Z \text{ [efm}^2] \\ & B(E2; \ 2^+ \rightarrow 0^+)_{IBA} = 170 \ e^2 \text{fm}^4 \\ & B(E2; \ 2^+ \rightarrow 0^+)_{exp} = 197(56) \ e^2 \text{fm}^4 \end{split}$$

N. Marginean et al. Phys. Lett. B 633(2006)696

⁵⁸Cr : A shape phase transition critical point ?

	Exp	IBM	KB3G	FPD6	GXPF1
$E_{4_1^+}/E_{2_1^+}$	2.20	2.20	2.01	2.17	1.86
$E_{6_1^+}/E_{2_1^+}$	3.66	3.55	3.40	3.66	2.99
$E_{8_1^+}/E_{2_1^+}$	5.22	5.04	5.05	5.45	4.49
$\frac{B(E2):4_{1}^{+} \rightarrow 2_{1}^{+}}{B(E2):2_{1}^{+} \rightarrow 0_{1}^{+}}$		1.39	1.15	1.38	1.13
$\frac{B(E2):6_1^+ \to 4_1^+}{B(E2):2_1^+ \to 0_1^+}$		1.41	1.13	1.24	0.93
$\frac{B(E2):8_{1}^{+} \to 6_{1}^{+}}{B(E2):2_{1}^{+} \to 0_{1}^{+}}$		1.16	1.18	1.16	1.01

More experimental B(E2) values are needed to firmly demonstrate the existence of E(5) symmetry in ⁵⁸Cr

Collectivity above N=20 shell closure

γ-softness in heavy S isotopes

The level scheme and B(E2) value suggest a significant degree of γ -softness in ⁴⁰S

⁴⁰S – Shell model and O(6) predictions

Shell model : sd-fp interaction (USD+КВ'+КLЕ)

Phys. Rev. C 55 (1997) 1266 Phys. Rev. C 63 (2001) 044316

Spectroscopy of ³⁸S

³⁶S (230MeV) + ²⁰⁸Pb

40Ar(205MeV) + 170Er

- •The 2055 keV gamma ray corresponds to the fourth excited state of ³⁸S
- This state was previously observed only in (t,p) experiments

Low-energy states of ³⁸S

Theoretical predictions for ³⁸S

Development projects:

Differential plunger with PRISMA/CLARA

Collaboration with IKP-Köln

- Consists in having an energy degrader at fixed distance after the target
- The gamma rays emitted before or after the recoil passes the degrader will have different Doppler shifts
- The lifetimes will be obtained from the intensity ratio before/after degrader

- Shape phase transitions are encountered also far from stability, both on proton-rich and neutron-rich regions
- The ⁵⁸Cr nucleus is a good E(5) candidate and could provide the opportunity to compare the E(5) model with large-scale shellmodel calculations
- New experimental information obtained with PRISMA/CLARA suggests that the deformation in heavy S isotopes could be characterized by γ softness
- Further developments will provide the possibility to measure lifetimes with PRISMA/CLARA