

Coulomb excitation of n-rich N=40 and N=50 nuclei with

REX-ISOLDE and Miniball

I. Stefanescu, P. Van Duppen, M. Huyse, O. Ivanov, J. Van de Walle

IKS, KU Leuven, Belgium

G. Georgiev

CSNSM Orsay, France

Miniball and REX-ISOLDE collaboration

Nuclear structure around N=40

KU Leuven

Nuclear structure towards N=50

➢ odd-A and odd-odd nuclei around ⁶⁸Ni → nuclear wave function dominated by single-particle configurations

Coulex of ^{67,68,69,70,71}Cu: strength of the N=40 subshell closure, evolution of collectivity around ⁶⁸Ni, testing ground for shell model calculations

✓ July 2005: Coulex of ^{68,70}Cu

KU Leuven

Neutron-rich even-A Cu isotopes

68,70,m,gCu: production of isomeric beams Example: 68Cu ASER 6 **T**_{1/2}=3.7 min 0.20 (6-) 0.18 0.14 0.14 0.10 0.10 0.06 0.04 0.04 689Cu 1+ - 68mCu β-(2+) T_{1/2}=30 s 0.00 30534.6 30534.8 30535.0 30535.2 30535.4 30535.6 30535.8 30536.0 ⁶⁸Cu ß-Transition frequency (cm⁻¹)

U. Koester et al., NIMB167(2000)528 ⁷⁰Cu: J. Van Roosbroeck et al., PRL92(2004)112501

Experimental setup for coulex @Isolde **Miniball CD** - detector **PPAC** Beam dump detector 68,mCu, ^{70,g}Cu **REX-ISOLDE** E=2.86 MeV/u 120**Sn** Beam (2.3 mg/cm^2) Beam impurities monitor $Y_{MB}(^{68,m}Cu) \sim 3 \cdot 10^5 \text{ pps}$ $Y_{MB}(^{70,g}Cu) \sim 5 \cdot 10^4 \text{ pps}$

Coulex of 68,70,m,gCu

> Laser ON/OFF runs for determining isobaric contaminants (Ga)

Coulex of ^{68,m}Cu

KU Leuven

Coulex of ^{68,m}Cu

⁶⁸Cu (preliminary): $B(E2; 4^- \rightarrow 6^-) = 6.7 \pm 0.6$ W.u.

Coulex of ^{70,g}Cu

KU Leuven

Coulex of ^{68,m}Cu, ^{70,g}Cu

**N. Smirnova, Private Communication

Towards the doubly magic ⁷⁸Ni

- evolution of collectivity in ^{74,76,78}Zn -

KU Leuven

Towards the doubly magic ⁷⁸Ni

- evolution of collectivity in ^{74,76,78}Zn -

- **Beam composition for** ^{74,76,78}**Zn**:
- ✓ laser ON/OFF measurements;
- ✓ Ionization chamber Si detector;
- ✓ proton-to-neutron detector;

KU Leuven

Towards the doubly magic ⁷⁸Ni - evolution of collectivity in ^{74,76,78}Zn -

✓ July 2004: coulex of 74,76,78 Zn; B(E2;2⁺→0⁺) measured;

✓ July 2005: first isomeric beams post-accelerated by REX-ISOLDE;

✓ Coulex of ^{68,70}Cu, $\pi p_{3/2} \otimes vg_{9/2}$ multiplet : B(E2; 4⁻ → 6⁻) measured, energy and spin of the 4⁻ state fixed; experimental results in good agreement with the preliminary shell model-calculations.

Upcoming runs:

- > July 2006: coulex of ⁸⁰Zn;
- > August 2006: coulex of 67,69,71Cu.

The Collaboration

O. Ivanov¹, I. Stefanescu¹, J. Van de Walle¹, M. Huyse¹, P. Van Duppen¹, G. Georgiev², O. Niedermaier³, M. Lauer³, V. Bildstein³, H. Scheit³, D. Schwalm³, N. Warr⁴, D. Weisshaar⁴, J. Eberth⁴, G. Pascovici⁴, J. Jolie⁴, P. Reiter⁴, M. Pantea⁵, G. Schrieder⁵, O. Kester⁶, F. Ames⁶, T. Sieber⁶, S. Emhofer⁶, B. Wolf⁶, R. Lutter⁶, D. Habs⁶, L. Fraile⁷, J. Cederkäll⁷, P. Delahaye⁷, Y. Kojima⁷, U. Köster⁷, T. Nilsson⁷, F. Wenander⁷, J. Iwanicki⁸, S. Franchoo⁹, P. Butler¹⁰, A. Hurst¹⁰, C. Barton¹¹, Th. Behrens¹², Th. Kröll¹², R. Gernhäuser¹², R. Krücken¹², D. Balabanski¹³, G. Lo Bianco¹³, K. Gladnishki¹³, A. Saltarelli¹³, A. Lagoyannis¹⁴

MINIBALL and REX-ISOLDE collaboration

¹ IKS KULeuven, Belgium ² CSNSM. France

³ Max Planck Institut für Kernphysik, Heidelberg, Germany

⁴ Institut fur Kernphysik, Universität zu Köln, Germany ⁵ TU Darmstadt, Germany ⁶ LMU München, Germany ⁷ CERN. Switzerland ⁸ Heavy Ions Laboratory, Warsaw, Poland ⁹ IPN Orsay, France ¹⁰ University of Liverpool, Great Britain ¹¹ University of York, Great Britain ¹² TU München, Germany ¹³ University of Camerino, Italy ¹⁴ NCSR Athens. Greece

