Gamma-ray spectroscopy with EXOGAM

G. de France, GANIL, for the EXOGAM collaboration

Gammapool workshop, Trento, May 8-12, 2006

Plan

- GANIL overview
- EXOGAM
- Physics examples
- Conclusions and outlook

GANIL overview

Stable beams from C to U

SPIRAL

E = 0.3A - 1.0A MeV 5A - 13.0A MeV 27A - 95 A MeVSISSI - RIB E = 25A - 80A MeV

SPIRAL - RIB He, N, O, F, Ne, Ar, Kr

E < 20A keV

E = 1.7A - 25A MeV

EXOGAM: High efficiency γ-spectrometer for exotic nuclei spectroscopy UK – France – Finland – Denmark – Hungary – Sweden - Germany

- Array for small and medium γ-ray multiplicity
- 20% efficiency @ 1.3 MeV
- Anti-Compton shield
- 16 segmented HPGe detectors
- Modularity
- Coupling with other detectors

The EXOGAM Clover

⁸⁶Kr+¹²C, β =8.4%

<u>Germanium type N</u> <u>Resolution inner</u> : 1.1 – 1.3 keV at 122keV 2.1 – 2.2 keV at 1.3 MeV <u>Resolution segment</u> : 2.1 – 2.8 keV at 1.3 MeV <u>Rel. eff.</u> : 40% x4 x1.5 (25cm, 1.3 MeV) <u>Abs. eff.</u> : 1.7 10⁻³ x4 x1.5 (11.4cm, 1.3MeV) (~1% per detector) <u>Timing</u> < 6 ns <u>Preamplifier</u>: 200 mV/MeV

Anti-Compton Shield

Coupling with other detectors:

Campaigns with:

- EXOGAM+VAMOS
- EXOGAM+VAMOS+TIARA
- EXOGAM+Si CD
- EXOGAM+DIAMANT
- EXOGAM+DIAMANT+Nwall
- EXOGAM+SPEG

• . . .

Physics with EXOGAM

- Spectroscopy of neutron rich nuclei around N=20
- Shape coexistence in Kr isotopes \rightarrow A Goergen
- Gamma-ray spectroscopy of n-rich nuclei using deepinelastic collisions → S. Bhattacharyya
- RT and RDT with VAMOS and EXOGAM \rightarrow Ch Theisen
- In-beam gamma-ray spectroscopy at intermediate energy
 → F Azaiez
- And many others!...

Spectroscopy of neutron rich nuclei around N=20

The N=20 shell closure

Motivations

• Populates excited states in a number of nuclei and in particular low-lying 3⁻ states around ³²Mg.

- → Inelastic scattering / transfer reaction with cocktail RIB
- Search for the 0_2^+ in ³⁴Si
- Spectroscopy of odd-A nuclei
 - → γ- γ coincidences
- Determine the multipolarity
 - \rightarrow Angular distribution of the γ -ray transitions

The setup

VAMOS spectrometer

- Efficiency = 100%
- Momentum acceptance $\pm 10\%$
- Unambiguous identification : M/Q, M, Z
- Event by event reconstruction of : Bρ, velocity, angular distribution

γ-ray spectrometer EXOGAM
•11 clovers (ECC + GOCCE + SHIELD)
(4 @ 45°, 3 @ 90°, 4 @ 135°)

Sissi Cocktail beams 34 Si & 32 Mg 8 Ebeam ≈ 30 AMeV (β ~0.24) 1 Identification: ΔE (Ion. chamber)

EXOGAM

TOF

H. Savajols, M. Gelin, G. Mukherjee et al.

Thickness = 30 mg/cm^2

 CD_2 target

Beam Identification

Ζ

15	P 27 0.26s	P 28 0.27035	P 29 4.145	P 30 2.498m	P 31 100	P 32	P 33 25.34d	P 34	P 35 47-35	P 36	P 37 2.31s
14	Si 26 2.2345	Si 27 4.165	Si 28 92.2297	Si 29 4.6832	Si 30 3.0872	Si 31	Si 32	Si 33 6.18₅	Si 34 2.77≲	Si 35 0.785	51 36 0.45≤
13	Al 25 7.1835	Al 26 7.4e+05y	Al 27 100	Al 28 2.241m	Al 29 6.56m	Al 30 3.65	Al 31 0.644s	Al 32 0.033≲	Al 33 0.25	Al 34	135 .0386s
12	Mg 24 78.99	Mg 25 10	Mg 26 11.01	Mg 27 9.458m	Mg 28 20.91h	Mg 29 1.35	Mg 3() 0.335s	Mg 31 0.235	Mg 32 9.125	Mg 33 0.09≤	Mg 34 0.025
11	Na 23	Na 24 14.96h	Na 25 59.15	Na 26 1.0725	Na 27 0.3015	Na 28 0.03055	Na 29 0.04495	Na 30 0.0485	Na 31 ∂.017≲	Na 32 0.01325	Na 33 0.0082≲
10	Ne 22 9.25	Ne 23 37.24≤	Ne 24 3.38m	Ne 25 0.6025	Ne 26 ø.235	Ne 27 0.0325	Ne 28 0.019₅	Ne 29 0.0156s	Ne 30 0.0058s	Ne 31 0.0034s	Ne 32 0.0035≲
9	F 21 4.158s	F 22 4.235	F 23 2.235	F 24 0.345	F 25 0.05s	F 26 0.00965	F 27 0.0052s		F 29 0.0024s		F 31 0.00112s
8	0 20 13.51s	0 21 3.425	0 22 2.25s	0 23 0.0825	0 24 0.065s		026 0.005683	Т		-	

Recoil Identification

Spectroscopy of neutron rich nuclei around N=20

Online results

Preliminary Results

G. Mukherjee, M. Gelin et al.

Preliminary Results

Preliminary Results

Conclusions & Outlook

- EXOGAM is heavily used at GANIL
- The physics case addressed by EXOGAM (most of the time in combination with other detectors) is very large
- The setup of an experiment using a radioactive beam is tricky
- We need to improve the counting rate capabilities of EXOGAM <u>AND</u> the ancillaries associated to it!
- EXOGAM+AD at GANIL