Fission-Fragment Spectroscopy @ the I.L.L.

Gary Simpson LPSC, Grenoble

Recent Studies

Stopped-Beams pool

A large Ge array on a thermal neutron guide?

The ILL

- Operates the world's most intense neutron source $(1.5 \times 10^{15} \text{ n/s/cm}^2)$
- . International lab (12 member countries)
- Houses ~45 instruments
- 430 staff members
- Budget ~90 M Euro
- \cdot ~225 days of beam per year

800 experiments per year

1500 visiting scientists per year

<u>The Lohengrin Fission-Product Spectrometer</u> (Radioactive beam Facility)

Separates according to A/q and v/q

No ion source - no chemical selectivity

~2 \$\\$10^{12}\$ fissions per second at target
(3.5 mg of ²³⁹Pu 742 b)

Experimental Setup

Conversion-electron detection efficiency $\sim 25\%$. Detect conversion electrons > 15 keV

¹²⁹Sn

Big improvements in Gamma-ray detection efficiency

Pool for stopped beams? (β-decay, Isomers) Would give big improvements at GANIL, ALTO, ISOLDE, ILL Stopped-Beams Pool

Factor of ~3 improvement for isomer experiments at Lohengrin (~order of magnitude for γ – γ coincidences)

Factor of ~2 improvement for fast-timing experiments at ISOLDE

Easier improvement than increased beam intensity

Optimal use of resources?

Swap 4-6 Clovers from and array of ~25 Clovers with phase-1 s

4-6 Clovers factor of 2-3 gain for stopped beam experiments

Only 16 channels -easy to integrate into existing DAQs

Already made bids for funding :French ANR: G. Simpson, G. Georgiev, F. Ibrahim :Belgium: G. Neyens

Deformation and Shape Coexistence in the A~100 region (LPSC, ILL, Warsaw, Manchester)

First observation of any gamma rays in ⁹⁵Kr

Structure does not seem to change far from stability!

J. Genevey et al. Phys. Rev. C 73, 037308 (2006)

¹³²Sn region</sup> (LPSC, ILL, Napoli, Warsaw)

μs isomers in the vicinity of the magic ¹³²Sn

						¹³⁴ Xe		¹³⁶ Xe		
									<u>136</u>	<u>138</u>
		¹²⁸ Te		¹³⁰ Te		¹³² Te			¹³⁵ Te	
		¹²⁷ Sb		¹²⁹ Sb	<u>130Sb</u>	<u>131Sb</u>		<u>133Sb</u>		¹³⁶ Sb
¹²⁴ Sn	<u>125</u> Sn	¹²⁶ Sn	<u>127</u> Sn	¹²⁸ Sn	<u>129</u> Sn	¹³⁰ Sn		¹³² Sn		
¹²³ In		<u>125In</u>	¹²⁶ In	<u>127In</u>	¹²⁸ In	¹²⁹ In	<u>130In</u>			
			¹²⁵ Cd							

-These nuclei are very difficult to measure

-symmetric fission region

J. Genevey et al. Phys. Rev. C 67, 054312 (2003)

First substantial spectroscopic information in ¹²⁹In

A. Scherillo et al. Phys. Rev. C 70, 054318 (2004)

Complements previous beta-decay studies

A. Scherillo et al, Phys. Rev. C 70 (2004) 054318.

> Collectivity in Cd nuclei?
(shell quenching?)

Need lifetime measurements (or Coulex)

Similar phenomena observed in equivalent nuclei near ²⁰⁸Pb.

Isomer Collaboration

LPSC Grenoble	-J. Genevey, J.A. Pinston, G. Simpson
ILL Tsekhanovich	-R. Orlandi, A. Scherillo, I.
Napoli	-A. Covello, A. Gargano
Cologne	-N. Warr, J. Jolie

Spontaneous Fission

Nuclei produced in mass range ~70-160

 \sim 4 neutrons per fission -secondary fragments remain very neutron rich!

6-8 \hbar mean spin (observed spins up to ~20 \hbar) -reaction multiplicity ~10

~100 nuclei available for prompt fission study per fissioning system -with current technology e.g. Euroball/Gammasphere (Normally use $\gamma - \gamma - \gamma$ coincidences. To build level schemes).

One experiment published ~60 articles including several PRLs (²⁴⁸Cm + EurogamII) -optimal use of resources?

Can also measure lifetimes (ps DPM, ps-ns plunger) -A.G. Smith g-factors -A.G. Smith

<u>Example of Physics</u> Combination of Eurogam II and Lohengrin data Observation of 3 different shapes in ^{99,101}Zr and ⁹⁷Sr

54

50

52

56

58

60

62 64

Disadvantage of s.f. -limited to two sources (²⁵²Cf, ²⁴⁸Cm) Solution -use thermal-neutron-induced fission (tried early 1990's W.R. Philips, J.L. Durell & co TESSA Brookhaven)

Change mass distribution by changing target

Thermal neutrons on ²⁴¹Pu

Mass 85 region See properties of nuclei close to ⁷⁸Ni (r-process nuclei). Few orbits play important roles in deformation

¹³²Sn region

Nuclei have a simple structure -good for testing the shell model far from stability. Shell model calculations work quite well for In nuclei close to ¹³²Sn -but less well away from it.

Neutron Guides

Reflect neutrons!

No fast neutrons

No gamma-ray background

Flux up to 1.3 x 10^{10} n/s/cm²

(PF1B) Thermal neutrons have meV energy

— Beam profile on target

Key Measurements and Nuclei

Spectroscopy $(\gamma - \gamma - \gamma)$

In and Cd nuclei close to ¹³²Sn

Neutron-rich mass 80-95 region

Yield measurements for reactors (heavy region not well measured -current reactors are operating at 40 % of their current theoretical efficiency!)

What kind of array do we need?

Need $\gamma - \gamma$ or $\gamma - \gamma - \gamma$ coincidences to build level schemes -strong function of array efficiency.

~10 % efficiency(at 1.3 MeV) needed, but must be able to handle multiplicity 10.

What is available?

Winter shutdown for most accelerators but ILL still runs

ILL direction are willing to write a letter of support

Welcome collaborators

Far future AGATA 201? even s.f. $(\gamma - \gamma - \gamma)$

Facts and figures about fast neutrons in proposed experiment

 2×10^{5} fissions/s 2.5 neutrons/fission (²⁴¹Pu) detectors at 15 cm x2 weeks = 2.1 x 10⁸ n/cm² on detectors

detectors at 20 cm x2 weeks = $4.7 \times 10^7 \text{ n/cm}^2$ on detector

Limit Euroball 1.5 $x10^8$ per detector Limit ORTEC = 1 $x10^9$ /cm²

Compare with spontaneous fission experiments at Gammasphere e.g. J. K. Hwang, Phys. Rev C 73, 044316 (2006) 252 Cf ~28 µCi (3% fission)

3.1 x10⁵ fissions/s 3.76 neutrons/fission (252 Cf) detectors at 25.4 cm x 2 weeks = 1.7 x 10⁷ n/cm² on detectors =8.5 x 10⁸ per detector

Experiments using Neutron Guides

-Search for isomers 30 ns> t_{1/2}>1 μs FiFi -ILL, LPSC, Manchester, Cologne, Warsaw

Collaboration

LPSC Grenoble	-J. Genevey, J.A. Pinston, G. Simpson
Univ. Warsaw	-W. Urban, A. Zlomaniac
ILL	-R. Orlandi, A. Scherillo, I. Tsekhanovich
Manchester Uni	-J.L. Durell, A.G. Smith, A. Thallon, B.J. Varley
Uni. of Cologne	-J. Jolie, N. Warr
Napoli	-A. Covello, A. Gargano

Other members of Lohengrin Community

ILL-Ulli KosterUniversity of Uppsala-H. MachUnversity of Camerino-D. BalabanskiIPN Orsay-G. GeorgievBruyeres-Le-Chatel-J.M. Daugas