## **Gamma Decay of Molecular Resonances**

F. Haas, S. Courtin and M.-D. Salsac

Institut Pluridisciplinaire Hubert Curien, Strasbourg, France



Resonances in 'Light' Heavy-Ion Reactions

Resonance phenomena at energies from the CB to ~ 5 MeV per nucleon Examples in the case of identical boson collisions: <sup>12</sup>C+<sup>12</sup>C, <sup>14</sup>C+<sup>14</sup>C, <sup>16</sup>O+<sup>16</sup>O, <sup>24</sup>Mg+<sup>24</sup>Mg, <sup>28</sup>Si+<sup>28</sup>Si

❑ Observation in these systems is understood: small number of open channels → Weak Absorption







Trento, May 2006

20

- Experimental and complementary signatures in the DECAY

- □ Main fragment channels, width, spins
- Molecular states and deformed states
- Search for the gamma decay of resonant structures
- But  $\Gamma_{\gamma} / \Gamma$  is (very) weak:  $10^{-4} 10^{-6}$



 $\square \alpha$  clustering in light nuclei

 $\square \alpha$  cluster band

 $\rightarrow$  <sup>16</sup>O(<sup>12</sup>C+ $\alpha$ ), <sup>18</sup>O(<sup>14</sup>C+ $\alpha$ ), <sup>20</sup>Ne(<sup>16</sup>O+ $\alpha$ ), <sup>44</sup>Ti(<sup>40</sup>Ca+ $\alpha$ )

 $\rightarrow$ Be and C neutron rich isotopes with 2 $\alpha$ xn and 3 $\alpha$ xn configurations

W. Von Oertzen and the HMI group (dimers and polymers)

M. Freer and the Charissa group

 Our best examples of α clustering: → <sup>8</sup>Be(0<sup>+</sup>) at E<sub>x</sub> = 0.0 MeV → <sup>9</sup>Be(3/2<sup>-</sup>, 5/2<sup>-</sup>) at E<sub>x</sub> = 0.0, 2.43 MeV E2(5/2<sup>-</sup> → 3/2<sup>-</sup>) : 24 W.u. → <sup>10</sup>Be(0<sup>+</sup>) at E<sub>x</sub> = 6.18 MeV → <sup>12</sup>C(0<sup>+</sup>) at E<sub>x</sub> = 7.65 MeV E2(0<sup>+</sup> → 2<sup>+</sup>) : 8 W.u. → <sup>16</sup>O(0<sup>+</sup>, 2<sup>+</sup>, 4<sup>+</sup>) at E<sub>x</sub> = 6.05, 6.92, 10.36 MeV

$$E2(2^+ \rightarrow 0^+)$$
 : 27 W.u.,  $E2(4^+ \rightarrow 2^+)$  : 65 W.u.



#### Clustering in heavier systems

CN at high excitation energies but narrow resonance (spreading) width of Γ = 100-200 keV observed in the two most remarkable examples: <sup>12</sup>C+<sup>12</sup>C and <sup>24</sup>Mg+<sup>24</sup>Mg

□  ${}^{12}C+{}^{12}C$  : at the CB, low spin (0+-4+), at  $E_x({}^{24}Mg) \sim 20 \text{ MeV}$  ${}^{24}Mg+{}^{24}Mg$  : at 2xCB, high spin (36+-38+), at  $E_x({}^{48}Cr) \sim 60 \text{ MeV}$ 

 $\square {}^{12}C + {}^{12}C \rightarrow {}^{24}Mg \text{ case}:$ 

Radiative capture reaction  ${}^{12}C({}^{12}C,\gamma){}^{24}Mg$ , gamma decay through doorway states ...

 $\square$  <sup>24</sup>Mg+<sup>24</sup>Mg  $\rightarrow$  <sup>48</sup>Cr case :

Resonances at high excitation energy in the CN, study of the fragment and particle decay channels



### The <sup>24</sup>Mg+<sup>24</sup>Mg reaction



- Excitation functions → resonant phenomena in collisions
- Origin of the resonances
- Resonances ↔ molecular state in the composite system
- Focus on the <sup>24</sup>Mg+<sup>24</sup>Mg resonance

J<sup>π</sup> = 36<sup>+</sup> E<sub>CM</sub> = 45,7 MeV Γ = 170 keV

<sup>24</sup>Mg+<sup>24</sup>Mg ON and OFF resonance measurements to study the decay into inelastic channels



# Reaction <sup>24</sup>Mg + <sup>24</sup>Mg

- Target : <sup>24</sup>Mg 40 µg.cm<sup>-2</sup>
- **Beam** :  ${}^{24}Mg$  at E<sub>L</sub> = 91.72 MeV (**ON**) and E<sub>L</sub> = 92.62 MeV (**OFF**)
- Inelastic channels
- <sup>24</sup>Mg fragments in **PRISMA** ( $\theta$ = 43°± 5°)
- Gamma rays in coincidence in CLARA



# Analysis of the experiment



Z selection



#### $q^+$ versus X (focal plane) $\rightarrow q^+$ selection





# Gamma transitions observed in <sup>24</sup>Mg





## Inelastic channel contributions to the resonance





# Direct feeding of the <sup>24</sup>Mg states



Resonance is seen in the 2<sup>+</sup>, 4<sup>+</sup> g.s band members and also in the 0<sup>+</sup> g.s (from other measurements).

In the inelastic channels, the  ${}^{24}Mg + {}^{24}Mg$  resonance flux is essentially observed in the 2<sup>+</sup> and 4<sup>+</sup> of the  ${}^{24}Mg$  g.s band.

This is in agreement with the molecular model proposed by Abe and Uegaki (*Phys. Lett.231B* (1989) 28) to describe the <sup>24</sup>Mg + <sup>24</sup>Mg high spin resonances.







30 b) 33.2 MeV J = 14 100 ę (degrees) 20 d) 36.5 MeV J\*= 14 (degrees) 20 0 36.5 MeV J"= 18 (degrees) h) 42.3 MeV J\*= 16 (degrees)



• <sup>12</sup>C+<sup>12</sup>C cluster resonances in <sup>24</sup>Mg up to  $E_x = 50 \text{ MeV}$ C.J. Metelko et al., Phys.Rev. C68 (2003) 0544321

- Reaction <sup>12</sup>C(<sup>16</sup>O, <sup>12</sup>C<sup>12</sup>C)α
- Dedicated equipment : Position **Sensitive Double-Sided Silicon Strip** detectors for multiparticle coincidence detection



Trento, May 2006

12C+12C CLUSTER RESONANCES IN 24Mg

Radiative capture in light heavy-ion induced reactions: detailed study for only the <sup>12</sup>C+<sup>12</sup>C and <sup>12</sup>C+<sup>16</sup>O reactions

The <sup>12</sup>C(<sup>12</sup>C,γ)<sup>24</sup>Mg reaction

Sandorfi et al.: Nal (~ 1980) Resonances Eγ > 18 MeV

□ Jenkins et al., (2000 - 2004)

Gammasphere (Berkeley) :

Decay of resonance not statistical

Feeding of  $K^{\pi} = 2^+$  band



Feeding of states 10 MeV (<sup>24</sup>Mg shape isomers with <sup>12</sup>C-<sup>12</sup>C structure ?)

FMA (Argonne) : Due to new decay channels : larger radiative capture cross-sections



<sup>12</sup>C+<sup>12</sup>C and <sup>12</sup>C+<sup>16</sup>O experimental studies





## <sup>12</sup>C+<sup>12</sup>C and <sup>12</sup>C+<sup>16</sup>O experimental studies





- ISAC I : RNBs / Stable (OLIS)
- 0° spectrometer
- Tof on 17 m
- Beam rejection 10<sup>13</sup>
- Acceptance : cone ½ angle 20 mrad

F. Haas et al.,



- recoil detectors (DSSSD, …)
- BGO array (ε = 50 % @ 5 MeV)



### <sup>12</sup>C+<sup>12</sup>C and <sup>12</sup>C+<sup>16</sup>O experimental studies

<sup>12</sup>C(<sup>16</sup>O,γ)<sup>28</sup>Si  $^{12}C(^{12}C,\gamma)^{24}Mg$ E<sub>c.m.</sub> (MeV) 10 EXCITATION ENERGY (MeV) IN 24 Mg 12C(160, y1)28Si2+(1.78 18.9 19.9 20.9 21.9 22.9 (b) 23.9 24.9  $\theta_{y}^{lab} 30^{\circ}$  $^{12}C(^{12}C, \gamma_{2,3})^{24}Mg^{4^+-2^+(4,12-4,23)}$ (c) To the ground state band 60 To the 4<sup>+</sup> and 2nd 2<sup>+</sup> 25 40 (nb/Sr) 20 20 15 dσ/dΩ<sub>c.m.</sub> 10 dσ/dΩ<sub>cm</sub>(θ=45°)(nb/sr)  $^{12}C(^{12}C,\gamma_1)^{24}Mg^{2^+(1.37)}$ (b) 60 15 12c(160, 7)28si To the first 2<sup>+</sup> 10 θ<sup>lab</sup>= 30° 40 20 EXCITATION ENERGY (MeV) IN 28Si Ec.m (MeV)  $^{12}C(^{12}C,\gamma_0)^{24}Mg^{0^+(g.s.)}$ (a) To the prolate excited band 12 30 8y = 120" 8si=-1.2\* 100 20 To the ground state (2\*,7.4 50 (nb/Sr) 10 (da /d Ω)<sub>c.m.</sub> (0+,6.7 MeV 150 6,0 7.0 9.0 8.0 5.0 10.0 11.0 Ecm(MeV) 10 A.M. Sandorfi, in Treatise on Heavy-Ion Science, D.A. Bromley, Vol II, sec. 3.

M.T. Collins, A.M. Sandorfi and D.H. Hoffmann, Phys.Rev. Lett. 49 (1982), 1553 / A.M. Nathan, A.M. Sandorfi and T.J. Bowles, Phys.Rev. C24 (1981) 931.

F. Haas et al.,

## <sup>12</sup>C+<sup>16</sup>O and <sup>12</sup>C+<sup>12</sup>C, results of the Dragon experiment



F. Haas et al.,

Multistep decay of resonances dominant for both systems  ${}^{24}Mg({}^{12}C-{}^{12}C)$ , states around 10 MeV, ( $\alpha$ + ${}^{20}Ne$  threshold = 9.32 MeV)  ${}^{28}Si({}^{12}C-{}^{16}O)$ , states around 13 MeV, ( $\alpha$ + ${}^{24}Mg$  threshold = 9.99 MeV)

What are those states ? There are candidates in the litterature, i.e. **unbound low spin states with**  $\Gamma_{\gamma}/\Gamma \sim 1$ Simulations of different scenarii under progress

A definitive answer concerning the identification of the doorway states An experiment accepted at ANL (FMA + Gammasphere) 1 system (<sup>12</sup>C+<sup>12</sup>C) at 1 energy (6 MeV resonance)

It would be nice to have a new spectrometer with a higher acceptance than Dragon and a  $\gamma$ -array with high efficiency and a resolution of ~1-2 % (array of LaBr<sub>3</sub>(Ce))

We are on the way to clearly identify EM transitions between molecular resonance states and cluster states !



■ Resonant Structures ↔ Molecular States



• Strasbourg-York (Haas et al.) Orsay Tandem  $E_{CM} = 16.45 \text{ MeV}, 10^+ \text{ resonance},$   $E_{X}(^{24}\text{Mg}) = 30.5 \text{ MeV}$ Château de Cristal + PSSD  $\gamma$ -rays from 10<sup>+</sup> to 8<sup>+</sup> resonant states  $\Gamma_{\gamma} / \Gamma = (1.2 \pm 0.4) \times 10^{-5}$ 

What about <sup>24</sup>Mg+<sup>24</sup>Mg, <sup>28</sup>Si+<sup>28</sup>Si ?





## Thanks !

**Collaboration** :

S. Courtin, F. Haas, M.-D. Salsac, D. Lebhertz, A. Michalon, P. Papka, C. Beck, M. Rousseau, A. Sanchez I Zafra IPHC, Strasbourg, France

D.G. Jenkins, B.R. Fulton, R.G. Glover, P.E. Kent University of York, United-Kingdom

C.J. Lister

Argonne National Laboratory, USA

D.A. Hutcheon, C. Davis, J.E. Pearson and the DRAGON collaboration Triumf, Vancouver, Canada

The PRISMA-CLARA collaboration, Legnaro, Italy



M.-D. Salsac, F. Haas, S. Courtin, C. Beck, M. Rousseau, A. Sanchez I Zafra IReS, Strasbourg

in collaboration with :

B.R. Behera, L. Corradi, E. Fioretto, A. Gadea, A. Latina, N. Marginean, D. Napoli, I. Pokrovski, A.M. Stefanini, Z.M. Wang INFN, Legnaro

S. Beghini, E. Farnea, S. Lenzi, G. Montagnoli, F. Scarlassara

University of Padova, Padova

S. Szilner Ruder Boskovic Institute, Zagreb

M. Trotta Dipartimento di Fisica, Napoli

A. Algora, Z. Dombradi Institute of Nuclear Research, Debrecen

> D.G. Jenkins, P. Papka University of York, York

R. Chapman, X. Liang University of Paisley, Paisley

