

Changing Shapes & Structures in Heavy Nuclei approaching the Proton Drip Line

David Joss

Oliver Lodge Laboratory, University of Liverpool.

Changing structure of yrast bands in Pt and Os isotopes near N=82

Transition from collective to single-particle structure in the light Re isotopes

The new proton emitter ¹⁵⁹Re

The $Z \le 82$ Region

The $Z \le 82$ Region

The $Z \le 82$ Region

Shape coexistence near the Z=82 shell closure

A phenomenon where nuclear configurations at similar excitation energies are built on very different deformations. Shape coexistence is expected to occur in transitional regions between weakly and strongly deformed ground states

Different shapes, co-existing at low excitation energy

Shape coexistence in the Os-Pt isotopes: mixed bands

G. D. Dracoulis et al., Nucl. Phys. A486 (1988) 414.

First observation of excited states in ¹⁷⁰Pt made with JUROSPHERE

 (8^{+})

(726)

S.L. King et al., Phys. Lett. B. 443 (1998) 82.

Many γ rays are apparent in the ¹⁷⁰Pt α - γ spectrum. Need coincidences to order γ rays in level scheme.

The GREAT focal plane spectrometer

200 Channels DSSD (2 x 6cm x 4cm)
28 PIN Diode detectors
Segmented Planar Ge (12cm x 6cm)
Segmented Clover Ge (4 x 70% Crystals)
Gas detector (MWPC)

- Position of recoils/alphas
- \geq e⁻ detection
- $> \beta$ & Low energy γ
- >γ
- > TOF & DE/E

http://npg.dl.ac.uk/GREAT

⁶⁰Ni + ¹¹²Sn \rightarrow ¹⁷²Pt* (E_{beam}=266 MeV)

Beam current = 5.5 pnA

Seven day experiment.

GREAT spectrometer (DSSD / PIN diodes)

JUROGAM array (43 Ge detectors)

Rates

Ge (Singles) ~ 4 kHz Recoil implants ~ 360 Hz

¹⁷⁴Pt – J. TM. Goon et al., Phys. Rev. C **70**, (2004) 014309. ¹⁷²Os -J.L.Durell, Phys. Lett. **B115**, (1982) 367.

Structure of Os isotopes near the N=82 Shell Gap

The low spin yrast structure is expected to be based on configurations involving the neutron $f_{7/2}$ and $h_{9/2}$ orbitals.

TRS calculations predict nearspherical shapes ($\beta_2 = 0.09$).

experimental alpha yield as σ ~400 nb

Level excitation energies for Osmium Isotopes

Above N = 86, lower-Z isotones have lower 8+ energies.

There is an inversion to this trend for $N \le 86$.

8⁺ States are lowered in excitation energy at higher neutron numbers for nuclei nearest to the closed proton shell.

Similar trend observed for the N=84 isotones. C.T. Zhang *et al.*, Phys. Rev. C54, (1996) R1.

Lowering of neutron $h_{g/2}$ states

Conclusions for the Pt isotopes

- Yrast band in ¹⁷²Pt indicates that intruder configurations may be important in ¹⁷²Pt.
- The relative position of the neutron $h_{9/2}$ states are changing near N=82.
- The character of the yrast band in ¹⁷⁰Pt might reflect the single-neutron structure more than (proton) intruder scenario.

II From collective to single-particle configurations in the Re isotopes

JUROSPHERE Experiment - from recoil-γγ coincidence matrix D.T. Joss et al., Phys. Rev. C68 (2003) 4303

Determining the staggering parameter

S(I) = E(I) - E(I-1) - 1/2[E(I+1)-E(I)+E(I-1)-E(I-2)]

Staggering in the [514]9/2⁻ bands of odd-A Re isotopes

RDT of the proton emitter ¹⁶¹Re

K. Lagergren et al., Submitted to Physical Review C.

•The exploitation of large γ -ray spectrometers with selective tagging techniques has allowed investigations of nuclei close to the proton drip line.

 Opportunity to chart the underlying and changing structure of the sub-lead region approaching the proton drip line and the closed neutron shell (N=82).

• Exciting possibilities with new instrumentation and tagging techniques in the future!

Thanks to GAMMAPOOL &

Sewervniak

Daresbury Laboratory

S. Eeckhaudt, T.Grahn, P.T. Greenlees, P.M. Jones, R. Julin, S. Juutinen, S. Ketelhut, M. Leino, A.-P. Leppänen, M. Nyman, J. Pakarinen, P. Rahkila, J. Sarén, C. Scholey, A. Steer. J.Uusitalo, K. Van de Vel & M. Venhart

J. Simpson, C.J. Barton & B. Gomez-Hornillos

R.D. Page, E.S. Paul, L. Bianco, I.G. Darby & J. Thomson

K. Andgren, B. Cederwall, E. Ganioglu, B. Hadinia, K. Lagergren, M.Sandzelius & R. Wyss.

B. Ga