New Developments for GaSp

INFN Sezione di Padova, Italy

Layout of the Presentation

General presentation of GaSp

- Configuration I
- Configuration II
- Ancillary detectors
 - Overview and perspectives
- Concluding remarks

The GaSp Array - The Ge Detectors

- 40 n-type HPGe detectors
 - ▶ FWHM < 2.4 keV @ 1332.5 keV
 - ➡ ε_{int} ~80% @ 1332.5 keV
 - ➡ P/T ratio ~25% with ⁶⁰Co source
 - ➡ symmetrically placed on 7 rings at 35°, 60°, 72°, 90°, 108°, 120°, 145°
- 40 anti-Compton shields
 - hardware anticoincidence
 - ➡ P/T ratio ~60% with ⁶⁰Co source

The GaSp Array – Configuration I

40 HPGe + AC d_{target-det.} = 27 cm $Ω_{Ge}$ ~ 10% $ε_{ph}$ ~ 3% @ 1332.5 keV

BGO inner ball

The GaSp Array - The BGO Inner Ball

80 BGO elements

- thick = 6.5 cm
- $\Omega_{\rm BGO}$ ~ 80%
- ♦ ε ~ 95% @ 1000.0 keV
- ε_{tot} ~ 70% @ 1000.0 keV
 R₀ ~ 2 4
- Multiplicity and sum energy
- Collimator for the Ge det.
- Inner space: R_{int} = 17 cm

The GaSp Array – Configuration //

40 HPGe + AC

- ➡ d_{target-det.} = 22 cm
- ♦ ε_{ph}~ 5.8% @ 1332.5 keV
- Pb collimator (6 cm thick)

➡ inner space R_{int} = 15 cm

Lifetime measurements 7 rings @ 35^o, 60^o, 72^o, 90^o, 108^o, 120^o, 145^o 6 6 4 8 4 6 6

The GaSp Array – Figure of Merit

Ancillary Detectors – ISIS

40 Si E- Δ E telescopes

40 E-ΔE Si telescopes
 ΔE ~ 130 μm ~ 71%
 E ~ 1000 μm ~ 65%
 Only Configuration I

Total efficiency

- ➡ Eproton ~ 60%
- ➡ E_{alpha} ~ 35%

Ancillary Detectors – ISIS

Ancillary Detectors – nRing

- Configuration I and II
 - ♦ 6 HPGe det. \rightarrow 31 cm
 - $\Omega_{\rm tot}$ = 6% @ 20°
 - $\bullet \varepsilon_{rel} = 3-5\%$
 - ▶ $R_0 = 6-7$ $RJ=10^{-5}$
 - $\rightarrow \alpha \sim 10^{-5}$

- Configuration I
 - ♦ ε_{ph}~ 2.8% @ 1332.5 keV
- Configuration II

♦ ε_{ph}~ 5.2% @ 1332.5 keV

Ancillary Detectors – nRing

Observational limit

³²S (@105MeV) + ⁵⁸Ni \Rightarrow ⁸⁸Ru + 2n GaSp I + I SI S + nRing

N.Marginean et al., Phys.Rev. C 63, 031393 (2001)

Ancillary Detectors – Koeln Plunger

¹⁶O (@69MeV) + ¹⁰⁸Cd \Rightarrow ¹²²Ba + 2n

GASPII + Plunger

P.G. Bizzetti et al., LNL Annual Report 2005

Configuration | and ||

Trento, May 2006

A. Dewald

Ancillary Detectors – CAMEL-RMS

Configuration I and II

- Q-ED-BM-ED
- FP-MWPPAC (120x80 mm²)
- ToF (GaSp trigger PPAC)
 - **♦** €~ 5–15%

 - ▶ R₀ ~ 2–6

Ancillary Detectors – CAMEL-RMS

 $^{24}Mg (@77MeV) + {}^{58}Ni \Rightarrow {}^{80}Y + pn$

Ancillary Detectors – MARTI

Mini ARray for Tagging with Isomers (MARTI)

GASP RECOILS MARTI (7 x BaF2) Eff.geom. = 85% TARGET **BEAM AXIS** Pb RECOIL CATCHER 80 cm

Ancillary Detectors – MARTI

Mini ARray for Tagging with Isomers (MARTI)

TOTAL EFFICIENCY ~ 20 - 30 %

Ancillary Detectors – EUCLIDES

- **40** Δ E-E telescopes

 - E ~ 1000 μm ~ 80%
- Segmented forward telescopes
- Total efficiency
 - Eproton ~ 60%
 - Ealpha ~ 35%
- Good transparency to γ-rays
- Specially design CAMAC electronics (Silicon Shaper Analyzer)
- Configuration I and II

Ancillary Detectors - EUCLIDES

Segmented

Non segmented

Ancillary Detectors - EUCLIDES

Ancillary Detectors - EUCLIDES

 32 S (125 MeV) + 24 Mg

Ancillary Detectors – RFD

- RFD measures evap. residues (recoils) in coincidence with γ-rays detected in Ge-array
 - selection of the recoil of interest by ToF technique
 - determination of the recoil velocity vector event-by-event

Ancillary Detectors – RFD

- Features & requirements
 - efficiency of γ-recoil coincidences: 20–50%
 - ➡ R₀ ~ 2-5
 - precise Doppler broadening correction for recoil velocity up to ~7%
 - detection angle 1.8° 6.7°
 - a pulsed beam with a time interval from 100 ns up to 1000 ns with Δτ ~ 1 ns
 - σ_{fus} > 50 μb
 - counting rate of the individual recoil detector not higher than 3 MHz
 - kinetic energy of a recoil greater than 4 MeV

¹⁸O(@67 MeV) + 0.8 mg/cm² ³⁰Si

P.Bednarczyk et al., Acta Phys. Polon. B32, 747 (2001)

Ancillary Detectors – RFD & lifetimes

¹⁸O(@67 MeV) + 0.8 mg/cm² ³⁰Si

 $<\beta>=2.8\%$

target thickness (recoil transit time T) defines a range of measured lifetimes (τ = 40 – 800 fs)

P. Bednarczyk et al., to be published

Ancillary Detectors - RFD @ Legnaro

Ancillary Detectors - CORSET

Ancillary Detectors - CORSET

- study of low- and intermediateenergy fission process: combined prompt gamma-ray spectroscopy with mass and energy distribution of fission fragments measurement
 - structure of neutron-rich fragments covering a wide range with A ≈ 60–190 and Z ≈ 24–68
 - direct information on the excitation energy of fission fragment partners and its distribution between collective and internal degrees of freedom

Dubna, July 2005

Ancillary Detectors - CORSET

Characteristics

- Time resolution $\Delta t \sim 120-180$ ps
- Mass resolution $\Delta A \sim 1.5$ amu
- TKE resolution $\Delta E \sim 1 \text{ MeV}$
- Start-Stop distance ~ 10 cm
- Angular resolution
 - $\Delta \theta \sim 0.3^{\circ}$
 - $\Delta \phi \sim 0.3^{\circ}$
- Solid angle of each arm
 - Ω ~ 150 msr
- Angle in the reaction plane θ=65°±13°
- Angle out of the reaction plane

 $\phi = \pm 10^{\circ}$

Configuration I

Concluding Remarks

- GaSp in 2 Configurations (I and <u>II</u>) campaigns
- Improve sensitivity → use ancillary detectors
 - EUCLI DES
 - nRing
 - RFD
 - CORSET
 - RMS
 - LuSiA
- Ancillary detectors can be operated independently or coupled together
- GaSp goes digital !?