

RDT studies of A~100 nuclei near the proton dripline Y- Pool Symposium ECT*, Trento, May 8-12, 2006

Bo Cederwall Department of Physics Royal Institute of Technology (KTH) Stockholm, Sweden

Onset of nuclear collectivity

"Magic" nucleus : all occupied j - shells are filled $\sum_{i=1}^{2j+1} m_i = 0 \forall \text{shells} \Rightarrow J^{\pi} = 0^+ \text{ i.e. no directional preference of w.f.}$ Departing from magicity, residual np interactions play a fundamental role in breaking the spherical symmetry of the nucleus $(N_n N_p \text{ scheme})$

Te energy systematics

Deviations from "normal" collectivity

Cakirli, Casten, Jolie and Warr Phys. Rev. C70, 047302 (2004)

Octupole deformation and correlations near N=Z

Evidence for enhanced octupole correlations near N= Z

G. de Angelis et al<u>.</u> Phys. Lett B535, 153 (2002) (Euroball)

G.F. Lane et al. Phys. Rev. C57, R1022 (1998) (Gammasphere)

J.F. Smith et al. <u>Phys. Lett B523, 13 (2001)</u> <u>(Gammasphere)</u> Astrophysical interest: End point of the rp process path in X-ray bursts and steady-state hydrogen burning on accreting neutron stars Of critical importance for "superbursts"

RDT *) has become a crucial tool for structural studies of heavy, proton rich nuclei

- Recoil-decay tagging spectroscopy started in the A ~ 100 (^{108,109}Te) region E.S. Paul et al.
- Extremely low production cross sections prevented further exploration
- Technical advances (RITU + GREAT, TDR ...) were needed to proceed further

*) R.S. Simon *et al.*, Z.P.A. 325, 197 (1986): NaI + SHIP @ GSI E.S. Paul *et al.*, P.R.C. 51, 78 (1995): Eurogam (45 HPGe) + DRS @ Daresbury

^{106,107}Te - Access to the lightest Te isotopes by means of recoil-decay tagging at JYFL Accelerator Lab.

The selective power of recoil-decay tagging spectroscopy

The "island" of alpha radioactivity "NE" of ¹⁰⁰Sn – a golden opportunity for RDT

Sr 10 118 ms β ⁻ 9.5 γ 128; 1125; 511; 1211 βn	1 Sr 102 69 ms β ⁻ γ244; 150; 94; 254 βn		1,871 66	0,957		56	Ba 137,327 σ 1,3	Ba 114 0,43 s ^{β*}	Ba 115 0,45 s	Ba 116 1,3 s ^{β⁺} ^{βp} 9
Rb 10 51 ms γ129; 288; 91* βn; β2n ?	0 Rb 101 32 ms β ⁻ γ92-1363 βn	Rb 102 37 ms ^{β βn γ 126}	3,016	-	55	Cs 132,90543	Cs 112 500 μs p 0,807	Cs 113 17 μs p 0,959	Cs 114 0,57 s β ⁺ ; α 3,239 γ 450; 698; 618 βρ 1,7-7.0 βα 7,0-12,5	Сз 115 1,4 s ^{β*}
6,161	<u>6,199</u> 64	5,116	4,271	54	Xe 131,29 σ24	Xe 110 ? « 3,745	Xe 111 0,9 s x 3,589; 3,500	Xe 112 2,7 s ^{β⁺} _{α 3,216}	Xe 113 2,8 s β ⁺ ; α 2,985 γ 121; 689 βp 2-7 βα 7-10	Xe 114 10 s ^{β+} ^{γ309; 162;} 104; 440
		53	 126,90447 σ 6,15		I 108 36 ms	I 109 100 μs 0,813	I 110 0,65 s ^{β*} α 3,444 βp 2,5-6,0 βα 7-12	1 111 2,5 s ^{β*} α 3,152 γ 341; 117; 321; 266	1 112 3,42 s ^{p⁺; ω C,080} ^y 606; 787; 786; 1143 ^{βp} 2.0-6.0 ^{βω} 6-12	I 113 5,9 s ^{β'} ^{α 2,610} ^{γ 463; 622;} 351; 567
		52	Τe 127,60 σ 4,7	Te 106 0,06 ms α 4,128	Te 107 3,1 ms α 3,861	Te 108 2,1 s + 3,317 pp 2-3	Te 109 4,1 s ^{β+} βp 3,3; 3,7 α 3,107	Te 110 18,6 s ^{β⁺} ^α 2,624 ^γ 895; 606; 219; 108	Te 111 19,3 s ^{β⁺} γ851; 881; 1268; 1392 βp 2,82; 2,66	Te 112 2,0 m ^{β⁺} ^{γ373; 296;} ⁴¹⁹
51	Sb 121,760 0 5,1	Sb 103	Sb 104 0,44 s β ⁺	Sb 105 1,12 s ^{β+} _{p 0,478}	Sb 106 0,6 s	Sb 107 4,6 s ^{β+} ^{γ 1280; 819;} 151; 704	Sb 108 7,6 s ^{β+} γ 1206; 905; 1599; 1273	Sb 109 16,7 s β ⁺ 4,4; 5,4 γ 925; 1062; 665; 1496	Sb 110 24,0 s β* 6,9 γ 1212; 985; 1243; 827	Sb 111 75 s ^{β⁺ 3.3 γ 154; 489; 1033}
Sn 100 0,94 s β ⁺ 3,4 γ	0 Sn 101 3 s ^{β+} βp 2-3,5	Sn 102 3,4 s β ⁺	Sn 103 7 s ^{β+} βp 1-3	Sn 104 20,8 s β ⁺ 2,4 γ 133; 913; 401; 1407 m; g	Sn 105 34 s ^{β+} _{7 1282; 1466; 309,; g; m βp 1–3}	Sn 106 2,1 m ⁶ β ⁺ 1,2 γ387: 253: 477; m		Sn 108 10,3 m ε; β ⁺ 0,4 γ396; 273; 169; 669 m	Sn 109 18,0 m «; ß ⁺ 1.6 y 1099; 1321; 331 g; m	Sn 110 4,11 h ^ε γ283 m

Challenge: Can only be populated in near-symmetric reactions

N = 7

⁵⁸Ni (⁵²Cr, 3n) ¹⁰⁷Te* Recoil-correlated α decays @ RITU focal plane

Alpha-decay branching ratio : 70% Half life : 3.1ms $\sigma = 1 \ \mu b$

⁵⁸Ni (⁵²Cr ,3n) ¹⁰⁷Te*

Recoil-decay correlated gamma-ray spectrum

Tentative level scheme

B. Hadinia, BC et al., Phys. Rev. C. 2004

⁵⁴Fe+ ⁵⁴Fe \rightarrow ¹⁰⁶Te* +2n

B. Hadinia, BC et al., Phys. Rev. C 72, 041303 (2005)

1000

¹⁰⁶Te gamma rays <u>σ = 25 nb</u> – A new limit for in-beam γ -ray spectroscopy (?)!

Gamma-gamma coincidences at $\sigma \sim 25$ nb

Te energy systematics and calculations

Te energy systematics and calculations ctd'

Energy ratios for even Te isotopes, $106 \le A \le 134$

Predicted stable octupole deformation and softness in the Xe isotopes

J. Skalski, Phys. Lett. B239, 6 (1990)

$54 Fe+ 58 Ni \rightarrow 110 Xe^{*} + 2n$ ($\sigma \sim 50 \text{ nb}$)

Work in progress!

$\begin{array}{c} Sr \ 101 \\ 118 \ ms \\ {}_{\beta}{}^{-9.5} \\ {}_{\gamma} 128; \ 1125; \\ 511; \ 1211 \\ {}_{\beta}n \end{array}$	Sr 102 69 ms ^{β⁻} γ 244; 150; 94; 254 βn		1,871 66	0,957		N=Z -	Ba 137,327 σ 1,3	Ba 114 0,43 s ^{β+} ^{βp}	Ba 115 0,45 s ^{β+} βp	Ba 116 1,3 s ^{β+} ^{βp} g
Rb 100 51 ms β ⁻ γ γ129; 288; 91* βn; β2n ? ?	Rb 101 32 ms β ⁻ γ 92-1363 βn	Rb 102 37 ms ^{β⁻ βn γ 126}	3,016	-	55	Сs 132,90543 ^{σ 29,0}	Cs 112 500 μs _{p 0,807}	Cs 113 17 μs p 0,959	$\begin{array}{c} Cs \ 114 \\ 0,57 \ s \\ \beta^+; \ \alpha \ 3,239 \\ \gamma \ 450; \ 698; \ 618 \\ \betap \ 1,-7,0 \\ \beta\alpha \ 7,0 \ -12,5 \end{array}$	Сѕ 115 1,4 s
6,161	6,199 64	5,116	4,271	54	Xe 131,29 σ 24	Xe 110 ? α 3,745	Xe 111 0,9 s α 3,589; 3,500	Xe 112 2,7 s ^{β+} _{α 3,216}	Xe 113 2,8 s β ⁺ ; α 2,985 γ 121; 689 βp 2-7 βα 7-10	Xe 114 10 s ^{β+} _{γ 309; 162;} 104; 440
		53	 126,90447 т 6,15		I 108 36 ms α 3,947	Ι 109 100 μs _{p 0,813}	<mark>β⁺ α 3,444 βp 2,5-6,0 βα 7-12</mark>	$\begin{array}{c} \textbf{I 111} \\ \textbf{2,5 s} \\ \textbf{\beta^+} \\ \textbf{\alpha 3,152} \\ \textbf{\gamma 341; 117;} \\ \textbf{321; 266} \end{array}$	I 112 3,42 s 3,42 s 3,43 s 3,43 s 3,43 s 3,43 s 3,45 s<	$\begin{array}{c} 1 \ 113 \\ 5,9 \ s \\ \beta^+ \\ \alpha \ 2,610 \\ \gamma \ 463; \ 622; \\ 351; \ 567 \end{array}$
		52	Τe 127,60 σ 4,7	Te 106 0,06 ms α 4,128	Te 107 3,1 ms α 3,861	Te 108 2,1 s ^{β+} α 3,317 βp 2-3	Te 109 4,1 s ^{β+} βp 3,3; 3,7 α 3,107	Te 110 18,6 s ^{β+} ^{α 2,624} γ 895; 606; 219; 108	Te 111 19,3 s β ⁺ γ 851; 881; 1268; 1392 βp 2,82; 2,66 βp	Te 112 2,0 m β ⁺ γ 373; 296; 419
51	Sb 121,750 σ 5,1	Sb 103	Sb 104 0,44 s ^{β+}	Sb 105 1,12 s ^{β+} _{p 0,478}	Sb 106 0,6 s β ⁺	Sb 107 4,6 s ^{β+} γ 1280; 819; 151; 704	Sb 108 7,6 s ^{β+} _{γ 1206; 905;} 1599; 1273	Sb 109 16,7 s ^{β+} 4,4; 5,4 _{γ 925; 1062;} 665; 1496	Sb 110 24,0 s ^{β+} 6,9 γ 1212; 985; 1243; 827	Sb 111 75 s ^{β+} 3,3 γ 154; 489; 1033
Sn 100 0,94 s ^{B⁺ 3,4}	Sn 101 3 s ^{β+} βp 2-3,5	Sn 102 3,4 s ^{β⁺}	Sn 103 7 s	$\frac{Sn \ 104}{20,8 \ s}_{\substack{\beta^{\pm} \ 2,4 \\ \gamma \ 133; \ 913; \\ 401; \ 1407 \\ m; \ g}}$	$\frac{Sn \ 105}{34 \ s}_{\beta^+}^{\beta^+}_{\gamma \ 1282; \ 1466; \ 309; \ g; \ m}_{\beta p \ 1-3}$	Sn 106 2,1 m ^ϵ β ⁺ 1,2 γ 387; 253; 477; m	$\frac{Sn \ 107}{2,9 \ m}_{\beta^+}^{\beta^+}_{\gamma \ 1129; \ 1542; \ 1001}_{m; \ g}$	Sn 108 10,3 m ε; β ⁺ 0,4 γ 396; 273; 169; 669 m	Sn 109 18,0 m ϵ; β ⁺ 1,6 γ 1099; 1321; 331 g; m	Sn 110 4,11 h [€] γ ²⁸³ m

Good mother - daughter relations are helpful!

Gamma-gamma coincidences at $\sigma \sim 50$ nb

Gamma-gamma coincidences

Xe experimental energy systematics

TRS calculations for extremely neutron deficient Xe isotopes predict decreasing collectivity

Comparing theory with experimental B(E2) values (Raman estimates) for extremely neutron deficient Xe isotopes

Xe and Te energy systematics

Conclusions (short version)

- In-beam gamma-ray spectroscopy is possible downs to 10s of nb x.s. using RDT and efficient Ge arrays
- Evidence for enhanced collectivity (quadrupole, beta-3 vibrations) in the Te and Xe isotopes as N → Z
- Possible indication of np correlations
- Need for lifetime data (but a challenge for RDT)
- Need for linear polarization measurements (clovers) at target pos
- Beta-tagging can extend studies to Sn and below
- Mass resolving (vacuum) separator will also be helpful to extend studies around and below ¹⁰⁰Sn
- Decay spectroscopy for short half lives (LISA ...)

Collaborators

Thanks to many collaborators from JYFL Gamma and RITU groups KTH Stockholm Univ. of Liverpool Univ. of York Daresbury RIKEN / Univ. of Tokyo Istanbul Univ. NBI