Spectroscopy of n-rich nuclei with CLARA-PRISMA

A.Gadea INFN-LNL
(for the CLARA - PRISMA collaboration)

-Description of the setup
-Grazing reactions as mechanism to study the structure of moderately neutron-rich nuclei
-Experimental campaign 2004-2005
-Results from n-rich medium mass (A~80) nuclei
-CLARA-PRISMA 2006-2007

Grazing reactions as a tool to study n-rich nuclei

Transfer with Radioactive Beams at Coulomb barrier Energies

$$
{ }^{80} \mathrm{Zn}+{ }^{238} \mathrm{U} \quad(460 \mathrm{MeV})
$$

Calculations by
G.Pollarolo

$$
{ }^{76} \mathrm{Ni}+{ }^{238} \mathrm{U}
$$

$\mathrm{d} \sigma / \mathrm{d} \Omega=10 \mathrm{mb}$

Experimental campaign Spring 2004 - End 2005

-Search for excited states in neutron rich Mg, Si and S. X.Liang, Paisley F.Azaiez, Orsay (R.Chapman talk)
-Nuclear spectroscopy of neutron rich nuclei in the $\mathbf{N = 5 0}$ region G.Duchene, Strasbourg, G.de Angelis, Legnaro
-Spectroscopy of deformed neutron rich A ~ 60 nuclei S.M.Lenzi, Padova, S.J.Freeman, Manchester (N.Marginean talk)
-Pair transfer effects in ${ }^{90} \mathrm{Zr}+{ }^{208} \mathrm{~Pb}$ L.Corradi, Legnaro
-Identification of the 6+ state in ${ }^{54}$ Co A.Gadea, Legnaro
-Resonances in 24Mg+24Mg and molecular states in $\mathbf{4 8 C r}$ F.Haas, Strasbourg (F.Hass talk)
-Excited states in ${ }^{31}$ S. D.R.Napoli, M.Marginean, Legnaro
-Decay properties of pairing vibration states populated in transfer reactions S.Szilner, Zagreb
-Large angle scattering of ${ }^{40} \mathbf{C a}+{ }^{X} \mathbf{Z r}$. G.Montagnoli, Legnaro

$$
\left({ }^{36} \mathrm{~S}+{ }^{208} \mathrm{~Pb}\right)
$$

```
(82Se + 238U)
```

$\left({ }^{64} \mathrm{Ni}+{ }^{238} \mathrm{U}\right)$
(${ }^{90} \mathrm{Zr}+{ }^{208} \mathrm{~Pb}$)
$\left({ }^{54} \mathrm{Fe}+{ }^{54} \mathrm{Fe}\right)$
(${ }^{24} \mathbf{M g}+{ }^{24} \mathbf{M g}$)

$$
\left({ }^{32} \mathrm{~S}+{ }^{58} \mathrm{Ni}\right)
$$

$$
\left({ }^{40} \mathrm{Ca}+{ }^{96} \mathrm{Zr}\right)
$$

$$
\left({ }^{40} \mathrm{Ca}+{ }^{x x} \mathrm{Zr}\right)
$$

Evolution of magic numbers towards the drip-line in n-rich nuclei

N=20 and N=50 Shell Gaps

weakening of the spin-orbit force?

DDRH Field Calculations by F.Hofmann,
C.M.Keil, H.Lenske, Phys.Rev.C64(01)034314.

Neutron Number
T. Otsuka et al. Zakopane 2004

GXPF1 interaction

$\mathrm{N}=20:{ }^{32} \mathrm{Mg}$ Island of inversion (due to residual interaction) B(E2): GANIL, RIKEN, REXISOLDE, NSCL
/ Nuclear Physics A682 (2001) 155c-160c

Tensor monopole

$g_{9 / 2}$

Major role in OBEP for π and ρ mesons

${ }^{82} \mathrm{Se}+{ }^{238} \mathrm{U}$ E=505 MeV (ALPI) 4 days, PRISMA at $\theta_{G}=64^{\circ}$

G.deAngelis, G.Duchêne Analysis: N.Marginean

		$\mathbf{K r} 78$		${ }_{\text {Kr80 }}^{\text {ot }}$			Kr83	Krs4				
				${ }_{\substack{225 \\ \text { Br79 } \\ 30 .}}$		Brs1			Hr880		$\underbrace{\text { cit }}_{\substack{\text { Rr8\% } \\ \text { (2) }}}$	(crse
Se74		$\begin{aligned} & \text { Se76 } \\ & 0 . \\ & 9.66 \end{aligned}$	$\begin{aligned} & 12 / 2 \\ & 70, \end{aligned}$			$\begin{aligned} & \text { 4e80 } \\ & \hline \text { Ce } \end{aligned}$			$\begin{aligned} & \substack{283 \\ 929 \\ 928} \\ & \hline \end{aligned}$	¢		
		${ }_{\text {As75 }}$							$\begin{aligned} & \text { as } 82 \\ & (192 \end{aligned}$	(ta	${ }_{4}^{4.854}$	
Ge72	${ }^{273}$			Ge76		- ${ }_{0}$				$\begin{gathered} \text { Ge82, } \\ \substack{185 \\ 0,1} \end{gathered}$	$\begin{gathered} \text { Ge83, } \\ (185) \end{gathered}$	${ }_{6}^{6 \times 8}$
						Gan7 ant (122)						${ }_{\text {Gin83, }}^{\text {G.31 }}$
			$\begin{aligned} & \text { an2 } 25^{\circ} \end{aligned}$			$\underset{\substack{\text { Zn76 } \\ \text { \%t, }}}{\substack{\text { \% }}}$		(1078			${ }_{\text {Zn81 }}^{0.29}$	
				${ }_{\substack{\text { c. } \\ 3 \\ \hline 13}}$		${ }_{1}^{\text {Cu75 }}$	${ }_{\text {cin }}^{\text {Cumb }}$			${ }_{\substack{\text { Cu79 } \\ \text { 189, }}}$	Cu8	
		Ni70	${ }_{\text {Nincs }}^{\text {NiP1 }}$,	Ni73		Ni73	$\underset{\substack{\text { Ni76 } \\ 0 \\ 0}}{ }$	Ni77	at		
40 42 44 Evolution of the N=50 shell: Searching for the shell gap quenching										(50)		
						Z=32: INM, R.C.Nayak et al. PRC 60 (1999) 064305						
						Z=24-26: RMF, L.S.Geng et nucl-th/0402083						

Spectroscopy of the $\mathrm{N}=50$ Isotones

G.deAngelis, G.Duchêne, et al. Analyzed by N.Marginean

A.F. Lisetskiy, B.A.Brown, M. Horoy, H. Grawe nucl-th0402082 (G-Matrix based on Bonn-C)

Pairing-vibration states in ${ }^{42} \mathrm{Ca}$ S.Szilner (LNL and Zagreb)

Angular Distribution measurement:

Angular Distribution of $\mathbf{4}^{+} \rightarrow \mathbf{2}^{+}$and $\mathbf{2}^{+} \rightarrow \mathbf{0}^{+}$ transitions indicates:

$$
\sigma I J \sim 0.3
$$

S.Szilner, LNL \& Zagreb

${ }^{90} \mathrm{Zr} 560 \mathrm{MeV}+{ }^{208} \mathrm{~Pb}$

1 day beam time L.Corradi, C.A.Ur, et al.

Distance along focal plane

CLARA-PRISMA 2006-2007

Drawback of the setup: low efficiency for $\gamma-\gamma$-PRISMA coincidences: Development of complementary ancillary devices for Doppler correction.
Measurement of γ-PRISMA coincidences (Identification) and $\gamma-\gamma$-ancillary coincidences ($\gamma-\gamma$ coincidences with Doppler correction).

DANTE: MCP array, developed in collaboration with FLNR Dubna, in phase of commissioning.

Development of the Differential Plunger RDDS technique for CLARA-PRISMA in collaboration with IKP-Koeln.
Development of a new focal-Plane detector for PRISMA based on SeD (collaboration U.K. - INFN)
Heavier beams from ALPI linac with the new positive ion injector PIAVE.

DANTE

(Detector Array for multi Nucleon Transfer Ejectiles)
-Start detector of PRISMA \Rightarrow No possible to place PPACs
-Limited efficiency of the PRISMA-CLARA setup \Rightarrow No $\gamma-\gamma$ coincidences.
-DANTE (heavy ion detector based on MCP) reveals the position interaction of the recoils \Rightarrow Doppler correction.
-DANTE placed at the grazing angle, has a high efficiency $\Rightarrow \gamma-\gamma$ coincidences \Rightarrow No need of an extra GASP experiment to build up a level scheme.

Versatility of DANTE

The DANTE configuration will depend on the grazing angle of the reaction of interest

The $\mathcal{D A} \mathcal{A} \mathcal{T}$ Edetectors

Test of the DANTE detectors

Test done with an a source

-Time resolution 130ps (TAC-ADC)
-Position resolution <1mm
-High counting rate
-High noise rejection

DANTE inside the reaction chamber

Development of a new FPD for PRISMA

Collaboration of several U.K.groups
Manchester - Daresbury - Paisley

Positive ion injector ECRIS + PIAVE commissioned Last quarter 2005 - first quarter 2006: Ne, Ar and Kr beam delivered to the experimental areas for test.
PIAVE beams for users expected second semester 2006.

${ }^{40} \mathrm{Ar}$ (238 MeV) PIAVE-ALPI beam test CLARA-PRISMA, January 2006

Analysis by N.Marginean

Outlook:

-Spectroscopy with grazing reactions, using the combination of a gamma- array and a large acceptance spectrometer (as CLARAPRISMA), provides valuable structure information on moderately n-rich nuclei.
-Differential RDDS technique is being developed in collaboration with IKP-Koeln, commissioning next month.

-CLARA is being upgraded with an ancillary array to perform "in beam" $\gamma-\gamma$ coincidences with Doppler correction. -New SeD based FPD for PRISMA are under development (U.K. - INFN) -Is foreseen to start the use of the CLARA-PRISMA setup with the medium-mass and heavy beams from PIAVE-ALPI during the second semester 2006.

The CLARA-PRISMA collaboration

-France
IReS Strasbourg
GANIL Caen
-U.K.
University of Manchester
Daresbury Laboratory
University of Surrey
University of Paisley
-Germany
HMI Berlin
GSI Darmstadt

- Italy

INFN LNL-Legnaro
INFN and University Padova INFN and University Milano INFN and University Genova INFN and University Torino INFN and University Napoli INFN and University Firenze University of Camerino
-Spain
University of Salamanca
-Romania
Horia Hulubei NIPNE Bucharest

